An Chomhairle Naisianta
Curaclaim agus Meastinachta
National Council for
Curriculum and Assessment

Draft Specification for Leaving

Certificate Computer Science
For consultation

\\ P September2025

4 :

N

\

Contents

SEINUON CYCIE ettt ettt e e et et e b e s e b e b e b esseba et e b essesseba b ensenseseebansensesasbansensensessesensenes 2
RATIONAIE ...ttt ettt s 3
AAIMIS ettt sttt sttt et ettt sttt ettt be bbbttt ettt 4
CoNtiNUILY aNd PrOSrESSION......ciiririeeeieiererteeeteterereeeeeetesseseseebessessessesessessessessesessensessessesensensessesensenes 4
JUNIOE CYCl ettt ettt ettt e e e b e b e b ebs e b e b e s essebesbessessessebassensessessssensensessesessensans 4

(S TN Vo] aTe BT T a 110 o @A/ ol [OOSR 5
StUdent 1€arNING iN SENIOT CYCIE ittt ettt et s ess e e ebe b essessebebensensessesensenes 5
KEY COMPELENCIES. ...cvititeretetierecteteeeteesteeee et sbete s essebesbesessessebessensessesessensessessesensensessesssensessessesensensen 6
Strands of study and 1€arNiNG OULCOMESc.ceveereeereiereeeeeeerectereeere e e ebeseseesesessesessesesssnesens 10
Strand 1: Practices and PriNCIPIES ... iveeeeeieteetceeteteeeeeeeretereere s sbesesseseesessessessesessensessesssensen 14
Strand 1 Learning OULCOMES........ouuveveiieereeeeereereteeerrereereeereeseesessessessessesessessessesessensessessesensenss 14
YA =] g To I3 @Ce Y (B olo g [l <] o} £ 16
Strand 2 Learning OULCOMES........ooveveiireereeeeeieteteeereereereeeseeseesessensessessesessessessesessensessessesensense 16
Strand 3: CoOmMPULEr SCIENCE IN PraCliCE...uuuiiiiteeeeceeetetceeeeretereee et eteeerr e ebesaesseseebessessessesessenees 18
Strand 3 Learning OULCOMES.......cucvireiveeeeereeereerereeereeeresesesesesessesessesesssesessesesssessnsesensesensesesens 18
Applied Learning Task 1 : INteractive WEDSITESc..ovviieeeieicreeeeeerereeceeeetereneeeeseevenens 18
Applied Learning Task 2: Analytics and Modelling.......c.ouveeieecieceerinreeeeeeereeeeeeereerenens 19
Applied Learning Task 3: Embedded SYSTEMS.........ooeevreerreeeeeeereereeeeeeere s eesesnene 20
Teaching for STUAENT IEAINING ...ttt ettt sses e ebesbe s esseseesesensessesensense 21
AASSESSIMENT.....eitieiee ettt ettt ettt ettt ettt bbbt b bt 23
Assessment for CErtifiCation ...t 23
COUISEWOIK PIrOJECTE....vieeeeeeieteeteeeeteeteteteteteetecree ettt sae s essesesse s essebeebensensessesensensensesensensen 24
Descriptors of Quality for the Coursework Project in Computer Science.........cooeeeveeerenee. 26
FiNal @XamiNation ...ttt ens 28
Reasonable accommOdatioNns ..ottt sene 28
Leaving CertifiCate SratdiNg ... ettt ettt see e essesessess e esessensessessesensens 29

AppendiX 1 Glossary Of aCtiON VEIDS ...t 30

Appendix 2 GloSSary Of COIrE CONCEPES ...ttt et eaeese e seese s sesessesensesan

Appendix 3 Abbreviations

Senior cycle

Senior cycle aims to educate the whole person and contribute to human flourishing. Students

)

experiences throughout senior cycle enrich their intellectual, social and personal

development and their overall health and wellbeing. Senior cycle has 8 guiding principles.

Senior Cycle Guiding Principles

Wellbeing and relationships Choice and flexibility

Inclusive education and diversity Continuity and transitions

Challenge, engagement and creativity Participation and citizenship

Learning to learn, learning for life Learning environments and partnerships

These principles are a touchstone for schools and other educational settings, as they design
their senior cycle. Senior cycle consists of an optional Transition Year, followed by a two-year
course of subjects and modules. Building on junior cycle, learning happens in schools,
communities, educational settings, and other sites, where students’ increasing independence
is recognised. Relationships with teachers are established on a more mature footing and

students take more responsibility for their learning.

Senior cycle provides a curriculum which challenges students to aim for the highest level of
educational achievement, commensurate with their individual aptitudes and abilities. During
senior cycle, students have opportunities to grapple with social, environmental, economic,
and technological challenges and to deepen their understanding of human rights, social
justice, equity, diversity and sustainability. Students are supported to make informed choices
as they choose different pathways through senior cycle and every student has opportunities
to experience the joy and satisfaction of reaching significant milestones in their education.
Senior cycle should establish firm foundations for students to transition to further, adult and
higher education, apprenticeships, traineeships and employment, and participate

meaningfully in society, the economy and adult life.

The educational experience in senior cycle should be inclusive of every student, respond to
their learning strengths and needs, and celebrate, value, and respect diversity. Students vary
in their family and cultural backgrounds, languages, age, ethnic status, beliefs, gender, and
sexual identity as well as their strengths, needs, interests, aptitudes and prior knowledge,
skills, values and dispositions. Every student’s identity should be celebrated, respected, and

responded to throughout their time in senior cycle.

At a practical level, senior cycle is supported by enhanced professional development; the
involvement of teachers, students, parents, school leaders and other stakeholders; resources;
research; clear communication; policy coherence; and a shared vision of what senior cycle
seeks to achieve for our young people as they prepare to embark on their adult lives. It is

brought to life in schools and other educational settings through:

e effective curriculum planning, development, organisation, reflection and evaluation
e teaching and learning approaches that motivate students and enable them to improve

e aschool culture that respects students and promotes a love of learning.

Rationale

Computer science is the foundation of all computing technologies. It involves the study of
computing and the design and development of computer systems. Computing technologies
have become highly integrated into most aspects of modern life from enhancing patient and
medical care and changing how we are entertained, to driving advancements in digital arts
and computational sciences. These technologies enable us to communicate instantly across
the globe and find new and exciting ways to assist human enterprise. Systems are being
designed and developed that are becoming more intelligent, adaptive and autonomous,

presenting both benefits and challenges for society.

In this context, the study of computer science is relevant to lives of all students. The Leaving
Certificate Computer Science specification is designed to be inclusive, and to accommodate
varying levels of previous student experiences. It is a student-centred course that encourages
creativity, self-expression, and embraces a human-centred approach to design and
development that prioritises the needs of the users. Computational thinking is one of the
most fundamental aspects of computer science, through which students learn abstraction,
decomposition, pattern recognition, algorithmic thinking and logical reasoning. They learn
how to use computing technologies to solve problems and automate processes, creating their

own computer programs and artefacts in areas relevant to their own interests and lives.

Students come to understand how computer science impacts the world around us, gaining
insights into how algorithms work while also creating their own. The study of computer
science deepens the students’ awareness of the ethical and social role of computers in
society, supporting them to become informed users and creators of technologies. Through
Applied Learning Tasks (ALTs), students can choose their own areas of investigation, and in

the process develop project management skills and collaborative problem-solving strategies.

Students studying this subject learn to think and create in ways that are valuable and

beneficial to them well beyond the computer science classroom.

Aims

Leaving Certificate Computer Science aims to empower and develop students as creators and
users of computing technologies. It aims to nurture a life-long engagement with
developments in computer science, with students becoming more informed about current

and emerging computing technologies.

More specifically, Leaving Certificate Computer Science aims to empower students to:

e develop computational thinking skills to solve problems, and to design and evaluate
solutions using computing technologies

e put the principles and concepts of computer science into practice while developing the
necessary key competencies

e design and build human-centred computing technologies, independently and
collaboratively, in ways that are creative and responsible

e be more critically aware of the ethical, social and environmental impacts of computing

technologies on their personal lives and on society.

Continuity and progression

Leaving Certificate Computer Science builds on the learning from early childhood education
through to the junior cycle curriculum. When students learn to think computationally they
become better able to conceptualise, understand and use computer-based technology, and so

are better prepared for today’s world and the future.

Junior Cycle

Many of the Statements of Learning at junior cycle relate to Leaving Certificate Computer
Science, especially those statements focused on problem solving, creating, communication,
and understanding the role and contribution of technology in society. The skills developed
during junior cycle are further enhanced in Leaving Certificate Computer Science through
opportunities where students can consistently work and learn with others, stimulate their
creativity through digital technology, evaluate solutions to issues that are meaningful to their

lives, develop resilience and manage their own learning.

Beyond Senior Cycle

Leaving Certificate Computer Science supports students in their understanding of current
computer technologies and prepares them for emerging technologies. The learning from this
subject is becoming more essential and beneficial to the future pathways of almost all
students. It also prepares students for a range of careers directly related to computer science
from software engineering to web development. Computer science nurtures a broad range of
transferable and trans-disciplinary competences such as problem solving, independent and
self-regulated learning, human-centred creative design and collaborative problem-solving.
These skills, combined with a technical proficiency and an understanding of Artificial
Intelligence (Al), can equip students to embrace the opportunities and challenges ahead, and
encourage them to participate meaningfully in society. Exploring the benefits and drawbacks
of computing technologies, and their ever-increasing impact on people and societies,

develops students as ethical users and creators of technology.

Student learning in senior cycle

Student learning in senior cycle consists of everything students learn within all of the
subjects and modules they engage with and everything students learn which spans and
overlaps across all of their senior cycle experiences. The overarching goal is for each student
to emerge from senior cycle more enriched, more engaged and more competent as a human

being than they were when they commenced senior cycle.

For clarity, the learning which spans across all of their senior cycle experiences is outlined
under the heading ‘key competencies’. The learning which occurs within a specific subject or
module is outlined under the heading ‘strands and learning outcomes’. However, it is vital to
recognise that key competencies and subject or module learning are developed in an
integrated way. By design, key competencies are integrated across the rationale, aims,
learning outcomes and assessment sections of specifications. In practice, key competencies
are developed by students in schools via the pedagogies teachers use and the environment
they develop in their classrooms and within their school. Subjects can help students to
develop their key competencies; and key competencies can enhance and enable deeper

subject learning. When this integration occurs, students stand to benefit:

e during and throughout their senior cycle
e as they transition to diverse futures in further, adult and higher education,

apprenticeships, traineeships and employment, and

e in their adult lives as they establish and sustain relationships with a wide range of

people in their lives and participate meaningfully in society.

When teachers and students make links between the teaching methods students are
experiencing, the competencies they are developing and the ways in which these
competencies can deepen their subject specific learning, students become more aware of the
myriad ways in which their experiences across senior cycle are contributing towards their

holistic development as human beings.

Key competencies

Key competencies is an umbrella term which refers to the knowledge, skills, values and

dispositions students develop in an integrated way during senior cycle.

Enriched, engaged
and
competent learners

KNOWLEDGE

SKILLS

VALUES AND DISPOSITIONS

Figure 1 The components of key competencies and their desired impact

The knowledge which is specific to this subject is outlined below under ‘strands of study and
learning outcomes’. The epistemic knowledge which spans across subjects and modules is

incorporated into the key competencies.

Thinking
and solving
problems

Managing Being
learning creative
and self

KEY
COMPETENCIES
IN SENIOR CYCLE

Cultivating

wellbeing Communicating

Participating
in society

Working
with others

4y
RACIES AND WOMER”

Figure 2 Key Competencies in Senior Cycle, supported by literacies and numeracy

These competencies are linked and can be combined; can improve students’ overall learning;

can help students and teachers to make meaningful connections between and across

different areas of learning; and are important across the curriculum.

The development of students’ literacies and numeracy contributes to the development of

competencies and vice-versa. Key competencies are supported when students’ literacies and

numeracy are well developed and they can make good use of various tools, including

technologies, to support their learning.

The key competencies come to life through the learning experiences and pedagogies

teachers choose and through students’ responses to them. Students can and should be

helped to develop their key competencies irrespective of their past or present background,
circumstances or experiences and should have many opportunities to make their key
competencies visible. Further detail in relation to key competencies is available at

https://ncca.ie/en/senior-cycle/senior-cycle-redevelopment/student-key-competencies/.

In Leaving Certificate Computer Science, thinking and solving problems is supported when
students are encouraged to seek challenges, make informed decisions, identify problems and
evaluate computational solutions to issues that are relevant and meaningful to their lives.
The student agency embedded in the structure of the ALTs enables students to apply
computational thinking strategies in ways that range from automation of simple everyday
tasks to how they might address complex societal issues and manage uncertainty. Students
learn and apply the practices and principles of computer science, and are encouraged to work
in ethical and responsible ways. The development of literacies relevant to the tasks and
numeracy supports the development of key competencies and vice-versa, and improves the

effectiveness of students in applying thinking strategies to their chosen tasks.

Leaving Certificate Computer Science is a collaborative discipline which can readily transfer
into other senior cycle subjects and future careers. The specification is designed to provide
students with practical opportunities to learn how to work with others while developing
project management skills. Through working with others on design and development tasks,
students can learn to resolve disagreements, celebrate diversity and manage themselves and

the emotions of working with others towards a collective goal.

Students learn how to recognise patterns and use abstraction techniques, decompose and
solve problems, think algorithmically, manage data, and evaluate digital artefacts.
Programming, and the development of their own computing technologies, provide motivation
for students and in the process they learn the importance of feedback, and how to respond
to feedback, and how to persevere and to be more resilient. The design and construction of
their own computing technologies requires an open-mindedness, a sense of playfulness and

an ability to incorporate multiple possibilities, perspectives and solutions.

The iterative design process encourages students to see mistakes as feedback where the
needs of users can be met in an adaptable and flexible manner. Computer science has vast
applications, and managing learning and self can be further developed through appropriate
open-ended task. Students can improve how they manage their learning, respond to

uncertainties in outcomes and build connections to other subjects and future careers. This

https://ncca.ie/en/senior-cycle/senior-cycle-redevelopment/student-key-competencies/

versatility of the subject can in turn enhance student literacies and numeracy, and strengthen

student’s digital, data and social media literacies.

The collaborative learning approach requires effective communication and healthy group
dynamics. The ALTs, including the additional assessment component (AAC), can often involve
students taking account of different perspectives and responding to the feedback from the
target user or audience. For example, students design user interfaces, in response to user
needs, that are clear and easy to use, and they learn by design how to scaffold their programs
with explanatory comments. Designing a computational artefact involves students

consistently communicating their design process and explaining how their artefact functions.

Leaving Certificate Computer Science is designed to incorporate student agency. This
approach, particularly through the ALTs, aims to support students in achieving successful
outcomes individually and collaboratively. Students can become more confident in their own
abilities, develop internal and external standards and improve self-efficacy through the
computational thinking strategies they learn. The opportunity to work on tasks of their own
choosing, within a collaborative classroom, nurtures enjoyment and empowers risk-taking

which in turn supports students in being creative and innovative.

Strands of study and learning outcomes

There are three strands in the Computer Science specification: Practices and principles, Core
concepts and Computer science in practice. All three strands are interwoven and are
designed to be studied concurrently at different stages of the course. As shown in Figure 3,
the strands are not intended to be studied in a linear order. Learning in strands 1 and 2 is
applied and developed through collaborative ALTs outlined in strand 3. In that way, the ALTs
provide further practical context. Student engagement with the ALTs should increase in

complexity and sophistication, thus developing and deepening the learning from strands 1
and 2.

ALT
1 Interactive Websiteg

Analytics and Modelling

S7dasuo0) 210D

Embedded Systems

Figure 3 : Structure of Leaving Certificate Computer Science

Strand 1: Practices and principles

The overarching practices and principles of computer science are the behaviours and ways of
thinking that computer scientists use. This strand underpins the specification and is
fundamental to all learning activities. By becoming familiar with, and fluent in, the practices

and principles that underpin good practice, students develop their ability to manage

themselves and their learning across the subject.

10

Strand 2: Core concepts

The core concepts of Leaving Certificate Computer Science represent major areas in the field
of computer science: algorithms, data, computer systems, models, machine learning, and
testing and evaluation. Students engage with the core concepts theoretically and practically
in this strand. As students progress in their learning, they engage in the ALTs outlined in
strand 3. Conceptual and practical classroom-based learning are combined with experimental

computer-based learning throughout the two years of the course.

Strand 3: Computer science in practice

Computer science in practice provides multiple opportunities for students to apply the
practices and principles and the core concepts. Students work in teams to carry out ALTs
over the duration of the course, each of which results in the creation of real and/or virtual
computational artefacts. These artefacts should be human-centred, and related to the
students’ lives and interests, while possibly being beneficial to the community and to society
in general. Examples of computational artefacts students can create include programs,
models, games, web pages, simulations, visualisations, digital animations, embedded system:s,

and apps.

The three ALTs explore the following contexts: Interactive websites, Analytics and modelling,
and Embedded systems. They provide opportunities for students to develop their theoretical
and procedural understanding as they grapple with computer science practices, principles
and core concepts in increasingly sophisticated applications. The structure is summarised in
Table 1.

Table 1: Structure of Leaving Certificate Computer Science

Strand 1: Practices and Strand 2: Core concepts Strand 3: Computer science
principles in practice

11

The outputs from each ALT are computational artefacts created using the design and
development process shown in Figure 4, and a concise report outlining its development. In the
report, students outline where and how the core concepts were used. The structure of the
reports should reflect the design and development process. Initial reports could be in the form
of structured presentations to the whole class. As students progress, their reports should
become more detailed and more varied in the format of the reports. Reports and computational
artefacts are collected in the student’s digital portfolio, which in itself becomes an additional

resource over the two years of the course.

Design a
representation
and decide

on tools

Plan a solution
informed by the

. Atal Portfa /.
investigation O\E\ _ __?I’O

~ Create
an artefact
/ based on
4 Iterative the plan
/ design and \ and design
and explore the issues |\ computational ’
\ artefacts ;
\
N /

Oigita) portio™®

Report on
the process by
documenting,
presenting and
reflecting

Figure 4: Overview of a design and development process

12

Leaving Certificate Computer Science is designed for a minimum of 180 hours of class

contact time. Table 2 outlines the design of learning outcomes for ordinary and higher level.

Table 2: Design of learning outcomes for Ordinary and Higher level

Ordinary level

Only the learning outcomes presented in

normal type.

Students engage with a broad range of
knowledge, mainly concrete in nature, but
with some elements of abstraction or
theory.

Students demonstrate and use a moderate
range of practical and cognitive skills and
tools and to plan and develop simple
investigative strategies.

Students select from a range of procedures
and apply known solutions to a variety of
problems in both familiar and unfamiliar
contexts.

Students design and produce computational
artefacts that serve a useful purpose.

All learning outcomes including those in bold

Higher level

type.

Students engage with a broad range of
knowledge, including theoretical concepts and
abstract thinking, with significant depth in
some areas.

Students demonstrate and use a broad range
of specialised skills and tools to evaluate and
use information, to plan and develop
investigative strategies, and to determine
solutions to varied, unfamiliar problems.

Students identify and apply skills and
knowledge in a wide variety of both familiar
and unfamiliar contexts.

Students design and produce computational
artefacts that serve a useful purpose.

Each strand begins with an overview followed by a table containing the learning outcomes.

The right-hand column contains learning outcomes which describe the knowledge, skills,

values and dispositions students should be able to demonstrate after a period of learning. The

left-hand column outlines specific areas that students learn about. Taken together, these

provide clarity and coherence with the other sections of the specification.

13

Strand 1: Practices and principles

The practices and principles of computer science describe the behaviours and ways of
thinking that computationally-literate students use to fully engage in a data-rich and
interconnected world. Computational thinking, at the heart of computer science practices, is
a problem-solving process that involves designing solutions that exploit the power of
computers. The practices and principles are encountered in a context-based approach related
to social, professional, and scientific contexts. Learning about the role of computers in society
broadens the student’s understanding of computer science and make it more meaningful and
relevant. In learning about designing and developing, students come to appreciate the

challenges and fulfilment involved in creating artefacts and in project management.

Strand 1 Learning Outcomes

Students learn about Students should be able to

Computational thinking

1.1. solve problems using computational thinking

Techniques of computational thinking, .
techniques

such as:
e Abstraction 1.2. explain the operation of a variety of algorithms

e Decomposition

e Pattern recognition/ Generalisation 1 3. create algorithms to implement chosen solutions

e Logical reasoning

e Algorithmic thinking 1.4. create computer programs using programming
concepts

Programming concepts: input-process-
output, variables, operators, conditionals,
loops, modularisation

Computer programs: How to read, write,
modify, design and test

Computing technologies to solve 1.5. explain how the power of computing enables
problems and to automate solutions different solutions to difficult problems
Heuristics 1.6. discuss when heuristics should and could be

used, and outline limitations

1.7. evaluate alternative computational solutions to

problems
Computers and society
Impacts on society of computing 1.8. discuss the relationships between computing
technologies, including cultural and technologies and society

ethical considerations
1.9. describe the role that adaptive and assistive

technology can play in the lives of people with
additional needs

14

Students learn about Students should be able to

The integration of computing
technologies into almost all aspects of
modern living

Factors empowering Al that include
access to data, computing power, and
new algorithms and models

Current and emerging Al systems, such as
agents, assistants, robotics, natural
language processing, that can process
and generate language, images, video and
other forms of human creativity

Costs and benefits of automating to
include algorithmic efficiency,
sustainability and decision-making

Computing developments:

e Turing machine, First electronic
computers, Solid state electronics,
Integrated circuits, the evolution of
programming languages, the
personal computer (PC), modern
devices, cloud computing

e Internet, World wide web (www),
cybersecurity, Al including machine
and deep learning

e Emerging trends that could shape
future computing technologies

Designing and developing

The design and development process

Working in a team, assigning roles and
responsibilities, such as: analyst, project
manager, designer, developer, tester, user
experience

Software development: approaches (agile
and waterfall), life cycles and design
stages

User-centred design
Usability and quality features that
include:

e communication with user

1.10.

1.11.
1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

1.19.

1.20.

1.21.

15

recognise the diverse roles, careers and
organisations that use computing
technologies

explain factors empowering Al systems

discuss how machine learning (ML) algorithms
and Al systems are used, and could be used,
by societies

illustrate and describe a variety of Al systems

evaluate the costs and benefits of the use of
computing technology in automating
processes

outline the importance of developments that
have shaped modern computing and consider
emerging trends

identify features of both staged and iterative
design and development processes

collaborate, within a team, in a variety of
roles and responsibilities, to complete
computing tasks

use modular design to carry out a specific
function, in hardware and/or software

describe systems using abstraction, and
explain the relationship between whole and
parts

consider the perspectives of the variety of
stakeholders and possible end users

consider the quality of the user experience

Students learn about Students should be able to

e consistency

e user control

e aesthetics

e managing errors.

Communication and reporting

Strand 2: Core concepts

1.22.

1.23.

when interacting with computing
technologies, including the role of a user
interface and the factors that contribute to its
usability

compare two user interfaces and identify
different design decisions that shape the user
experience

reflect on the design and development
process

This strand introduces five core concepts that represent major content areas in the field of

computer science: algorithms, computer systems, data, modelling and machine learning, and

evaluation and testing. The core concepts are developed theoretically and applied practically.

In this way, conceptual classroom-based learning is intertwined with experimental computer-

based learning throughout the two years of the course.

Strand 2 Learning Outcomes

Students learn about Students should be able to

Algorithms

Pseudo code and flowcharts
Algorithms: unplugged and plugged

Features of algorithms such as sequencing,

selection, iteration and non-recursive and
recursive modularisation

Sorting: Selection sort, Bubble sort,
Quicksort
Search: Linear search, Binary search

Algorithmic efficiency regarding potential
number of operations involved for similar
inputs

Computer systems

Components of a computer: basic von
Neumann architecture and operation
including CPU-Bus-Memory, Fetch-
Execute Cycle, CPU Speed and 10

2.1.

N

2.8

24.

2.5.

16

2.

outline the functionality of an algorithm
through pseudo code and flowcharts

synthesise existing algorithms and create new
ones to solve a range of problems and to fulfil
specific requirements

use search and sorting algorithms and compare
the limitations and advantages of each
algorithm

compare algorithms on correct functionality
and algorithmic efficiency

describe the different layers and components
of a computer including the operation of those
components

Students learn about Students should be able to

Devices

Computer layers: Hardware,
Operating System, Application, User

Units of logic gates: from individual types
to half-adder

Numerical operations: Addition of
binary numbers and conversion
between binary, decimal and
hexadecimal.

Web infrastructure:

e the client-server model

e communication protocols such as
HTTP, HTTPS, TCP/IP stack

e layers: application, transport,
network and physical

e basic cloud computing - scalability
and flexibility

Data

Data Types (Python): Numeric (int, float),
Text (str), Sequence (list), Boolean (bool)

Standard character sets: ASCII and
Unicode

Simple ciphers: Caesar, substitution and
Vigneére

RSA algorithm

Data sources including balance, ethical
implications of collecting data and bias in
datasets

Data storage and management:
Database management systems (DBMS)
e Flat file storage and retrieval
¢ Relational DBMS
Modelling and machine learning

Computer models and running simulations

Model qualities: Purpose, input data,
assumptions, and model outputs

2.6.

2.7.

2.8.

29.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

17

compare digital and analogue inputs and
outputs

describe the different types of logic gates and
arrange into larger units to perform more
complex tasks

explain why the binary and hexadecimal
number systems are used in digital computing
and perform basic numerical operations

explain what is meant by the world wide web,
and outline what makes up the web
infrastructure

use data types that are common to procedural
high-level languages

consider the importance of having standard
character sets

use a simple cipher to encrypt/decrypt a
message and outline how the RSA algorithm
works

use a flat file database to collect, store, clean
and sort data

describe different approaches to data storage
and management

compare relational with non-relational DBMS

outline the benefits and limitations of
modelling and running simulations in relevant
situations

evaluate the qualities of models

Students learn about Students should be able to

Decision-making algorithms: 2.18. use decision-making algorithms

e classical, rules-based 219 ine how d infl h
« supervised ML algorithms and .19. examine how data can influence the outputs

libraries: decision-tree and multiple and decisions of models
(linear) regression only

Evaluation and testing 2.20. identify warnings and errors in computer code

Debugging, fixing and evaluating and modify as required
automated solutions
2.21. reflect critically on, and identify limitations in,

Qualities of programs such as functionality, completed programs and suggest possible
algorithmic efficiency, modularisation, improvements
usability and meeting user needs

Software Testing: Use case, Unit, Function,

System (alpha and beta) 2.22. evaluate programs using software testing

Strand 3: Computer science in practice

Computer science in practice provides multiple opportunities for students to use their
conceptual understanding in practical applications. Students engage with three team-based
ALTs during the course. Student groups design and develop computational artefacts that are
personally relevant or beneficial to their community and society in general. Examples of
computational artefacts that students can create include programs, models, games,
simulations, visualisations, digital animations, embedded systems, and apps. Students are
expected to document, reflect and present on each ALT, as part of their ongoing and

managed digital portfolio.

Strand 3 Learning Outcomes

Applied Learning Task 1 : Interactive websites

Design is one of the key practices and principles of computer science. As designers and creators
of technology, students can be innovative and expressive through the creation of artefacts.
Computer science is also an information-intensive discipline that involves the selection,
evaluation, recording and presentation of information. Students come to see the richness and
complexity of how to communicate with, and provide information about, the world around
them. In this ALT, students develop a website which the user can interact with. The students use
HTML/CSS to build their website, and they can enhance it using other technologies. Through

planning and designing an interactive application that can meet a set of user needs, students

18

can experience first-hand the design and development process, while enhancing their

knowledge of the role of computing systems.

Students learn about Students should be able to

ALT1: Interactive websites
. 3.1. understand and list user needs and requirements
Information systems
before defining a solution

User-centred and web design
3.2. create a user interface taking the quality of the

HTML/CSS

3.3. create an interactive application, using
Design and development process . . .
HTML/CSS, that can display information to meet a

set of user needs

Applied Learning Task 2: Analytics and modelling

Often with data, it can be challenging to see patterns, spot trends, and understand factors
shaping the data. Data analytics and computer models can assist humans in gaining insights. In
this ALT, students develop systems to analyse, interpret, and gain insights from data. They
identify interdisciplinary topics, pose questions, gather, represent, and analyse data, build
models, and test scenarios. Problems or issues that are not amenable to analytics can often be
analysed through modelling, and so students could for example create two artefacts designed
to explore modelling and analytics separately. Students could also create a single,
interconnected artefact that uses the same dataset for both analytics and modelling. This task
deepens students’ understanding of the practices and principles of computer science while also

enabling students to investigate issues of relevance to them.

Students learn about Students should be able to

ALT2: Analytics and modelling

Data preparation process: gather, 3.4. use the data preparation process and
structgre and transform data for represent data graphically

analysis

Statistical measures such as frequency, 3.5. create a data-based model that can test

averages, spread) o
scenarios and make predictions

19

Students learn about Students should be able to

Running simulations and evaluating
outcomes

. . L 3.6. analyse and interpret data and model
Using data to inform and gain insights

outputs, in a way that informs decision-

making

Applied Learning Task 3: Embedded systems

The design and application of computer hardware and software are a central part of computer
science. In this ALT, students will implement a system that uses sensors and controls inputs
and outputs as part of an embedded system. By building the component parts of a computer
system, students will deepen their understanding of how computers work and how they can

be embedded in our everyday environments.

Students learn about Students should be able to

ALT3: Embedded systems
Computer systems 3.7. use inputs and outputs within an embedded

system
Computing and controlling inputs v

and outputs

3.8. create a program that utilises inputs and
How to use and manage data -
digital and analogue

outputs

Design and development process 3.9. create applications using embedded systems

20

Teaching for student learning

The three strands of learning are designed to be interwoven and interconnected. The ALTs of
strand 3 in particular are further designed to allow for interconnection and they are intended
to be the lens through which students experience the course. Student learning in Leaving
Certificate Computer Science can be best achieved through teaching approaches aligned to
the design and intention of the specification. Teachers are best placed to make professional
judgements on how to facilitate an effective balance for the students of theoretical, applied
and problem-based learning, project management and authentic collaborative activities.
Teaching for student learning therefore requires a corresponding balance of teaching
strategies, decided by the teacher as being most beneficial to the students, while developing

necessary key competencies.

Through ALTs, students can work together to apply the practices, principles and core concepts
of the course. In addition to cumulative learning across the ALTs, and other strands of study,
students have opportunities to frequently engage with learning outcomes in a variety of ways.
This pedagogical approach opens the course for students to put design and development
processes into practice, develop project management skills and collaborate on problem-solving
strategies, while also learning how to manage their own progress and learning. Teaching
through the lens of ALTs further enables students to make connections between computer
science, other subjects, and everyday experiences, as they design and build computational
artefacts that are personally relevant to them or their peers, to their community or to society

in general.

Teachers supporting self-directed learning and reflection can enable students to plan, monitor,
and evaluate their own learning and improve self-efficacy. Reporting and presenting on their
artefacts, and managing their digital portfolio, develops communication skills, offers moments
of reflection and celebration of achievements and enhances student awareness of more diverse
perspectives.

Teachers can work with students at the investigation and planning phase of the design and
development process to stimulate ideas and nurture students towards relevant tasks. The
problem-based nature of the course, underscored by explicit instruction and inquiry-based
approaches, offers genuine opportunities for a variety of summative and formative
assessments. In addition, students can be encouraged to move from broad curiosity to a critical
understanding of computer science, offering many authentic moments for peer- and self-

assessment.

21

Learning in computer science needs, as far as is practical, to be applied to problem solving and
design exercises. Teachers can use their judgement to capture opportunities to develop the
theoretical foundations of the students’ practice, particularly through the ALTs. Other teaching
strategies that can support learning in computer science include pair programming, activity-
based learning, scaffolded learning strategies to support students becoming confident

programmers, posing questions of varied cognitive load and facilitating peer-to-peer teaching.

Students vary in the amount and type of support they need and the use of inclusive
pedagogies, such as differentiated instruction, will provide such support. In addition,
strategies such as adjusting the level of skills required for tasks, varying pace and teacher
intervention, and increasing opportunities for peer support can help students interact at

appropriate levels.

22

Assessment

Assessment in senior cycle involves gathering, interpreting, using and reporting information
about the processes and outcomes of learning. It takes different forms and is used for a
variety of purposes. It is used to determine the appropriate route for students through a
differentiated curriculum, to identify specific areas of strength or difficulty for a given
student and to test and certify achievement. Assessment supports and improves learning by

helping students and teachers to identify next steps in the teaching and learning process.

As well as varied teaching strategies, varied assessment strategies will support student
learning and provide information to teachers and students that can be used as feedback so
that teaching and learning activities can be modified in ways that best suit individual learners.
By setting appropriate and engaging tasks, asking questions and giving feedback that
promotes learner autonomy, assessment will support learning and promote progression,

support the development of student key competencies and summarise achievement.

Assessment for certification

Assessment for certification is based on the rationale, aims and strands of study of this
specification. There are two assessment components: a final examination and an additional
assessment component (AAC) called the Coursework Project. The final examination will be at
higher and ordinary level and the Coursework Project will be based on a common brief. Each

assessment component will be set and examined by the State Examination Commission (SEC).

Examination questions will require students to demonstrate learning appropriate to each
level. Differentiation at the point of assessment will also be achieved through the stimulus
material used, and the extent of the structured support provided for examination students at

different levels.
Assessment programming languages

Python will be the programming language assessed in the final examination. There is no

restriction in choice of language used in the ALTs and Coursework Project.

23

Table 3: Overview of assessment for certification

Assessment Component Weighting
Coursework Project 40% Common brief
Final examination 60% Higher and Ordinary

Coursework Project

The Coursework Project provides an opportunity for students to display evidence of their
learning and to apply the practices and principles of computer science in ways that cannot be
readily assessed by the final examination. It is similar to the structure of the ALTs in strand 3
that students complete during the two years of the course. It is designed to be naturally
integrated into the flow of teaching and learning and to exploit its potential to be motivating

and relevant for students.

The Coursework Project must be carried out individually. While Leaving Certificate Computer
Science is designed to be experienced in a collaborative and supportive environment,
evidence of learning is individually submitted and assessed. It provides opportunities for
students to pursue their interests in this area and to make their own design and development
decisions. It can also further enhance the relevance of computer science to their lives. The
Coursework Project is based on learning outcomes from across the strands, with those of
strand 3 being particularly relevant. Students will have opportunities to apply, demonstrate
and expand the key competencies they have developed through this subject as they

complete this assessment.

The Descriptors of Quality in Table 4 are intended to provide insights into the broad

expectations for students completing the AAC.
Coursework Project brief

A Coursework Project brief will be published annually by the SEC in term one of year two. It
involves students creating an artefact and submitting it for marking to the SEC in term two of

year two. The brief will be thematic in nature and require students to apply their learning

24

from across all strands, with strand 3, Computer science in practice, being of particular
relevance. The digital portfolio built up by students during the course, with reports and
computational artefacts from the ALTs, will be a useful resource for students carrying out the

Coursework Project.

Coursework Project
submission

Coursework Project

Coursework Project

brief released Students work on their project

during the window

Term 1 of 6th year Term 2 of 6th year

Figure 5: Window for completion of the Coursework Project

In addition to setting out the specific requirements of the Coursework Project, the brief will:

allow students to develop their thinking and ideas on areas they would like to pursue,

related to the brief

o facilitate teachers and students in their planning

e give students opportunities to further deepen their learning in computer science while
also applying and expanding key competencies they have developed

¢ include stimulus material, and the basic and advanced features required of the

student’s artefact.

The dates for release of the brief and submission of the coursework will be set by the SEC
each year.: The Coursework Project is designed to naturally integrate into the flow of
teaching and learning and the window for completion will be wide enough to allow for
flexibility within each classroom. Upon completion, students submit their coursework in a
format prescribed by the SEC. This includes a report submitted as an accessible HTML file,
where this format is appropriate for a given brief. The overview of the window for
completion of the Coursework Project is shown in Figure 5. A separate document, Guidance
to Support the Completion of the Coursework Project in Leaving Certificate Computer Science,
gives detailed guidance on the coursework assessment process, including a range of matters

related to the organisation, implementation, and oversight of the Coursework Project.

t]t is envisaged students will require up to 25 hours to complete the Coursework Project. Further
details are provided in the Guidance to Support the Completion of the Coursework Project in Leaving
Certificate Computer Science.

25

Descriptors of Quality for the Coursework Project in Computer Science

The Coursework Project will require students to demonstrate proficiency in course content

and skills that are not easily assessed by the end-of-course examination. The assessment will

require students to create an innovative computational artefact, and to report on the work

and process involved. Students must acknowledge, through appropriate citations and

references, the source or author of all information or evidence taken from someone else’s

work, including the use of Al. There are six areas of achievement described in Table 4, which

reflect the learning from all strands and are particularly grounded in the practices and

principles of computer science. The six areas of achievement are: designing and developing,

computational thinking, computer programming, problem solving, appropriate use of

computing technologies and awareness of potential societal impacts.

Table 4: Descriptors of Quality: Coursework Project

Designing and
developing

Computational
thinking

Students demonstrating
a high level of
achievement

iteratively design, model,
test, debug and evaluate
solutions;

choose appropriate ways
to represent and evaluate
solutions and final
products;

show considerable
evidence of research into
a rationale for
approaching the brief;
evaluate the performance
and potential of the final
artefact.

consider a variety of
alternative potential
solutions to the brief;
systematically solve
problems in the design
and development process
using a variety of
computational thinking
techniques;

Students demonstrating
a moderate level of
achievement

iteratively develop, test,
and debug solutions;
choose limited ways to
represent and evaluate
solutions and final
products;

show evidence of
research into a rationale
for approaching the brief;
evaluate the performance
of the final artefact.

consider potential
solutions to the brief;
solve problems in the
design and development
process using
computational thinking
techniques

26

Students demonstrating
a low level of
achievement

do not iterate
significantly upon
solutions or the final
product;

test, debug and refine
solutions in a linear
fashion, lacking iterative
processes;

show limited evidence of
research into a rationale
for approaching the brief;
do not meaningfully
evaluate the final
artefact.

consider limited
alternative solutions to
the brief;

solve problems as part of
a process with some
evidence of the use of
computational thinking
techniques;

show limited use of
innovative thinking and

Computer
programming

Problem
solving

Appropriate
use of
computing
technologies

Awareness of
potential
societal
impacts

use innovative thinking in
design and development.

show considerable
evidence of appropriate
use of high level data
structures;

implement a modular
approach extensively and
maximise opportunities
to create well-structured
code;

minimise duplication and
enhances readability with
informative, well-placed
comments;

have fully tested and
evaluated their programs
for robustness, correct
logic, functionality and
good Ul design.
independently identify
and act on patterns in
problems and solutions;
seek out pre-existing
solutions, evaluating
ideas and/or solutions
from one problem
context to another.
consistently display
curiosity and
perseverance to
investigate and analyse a
spectrum of appropriate
automated solutions;
demonstrate an ability to
apply heuristics and
workarounds.

celebrate ambiguity and
having different
interpretations and as
creators of artefacts,
show a sensitivity to
ethical, adaptive and
assistive considerations,
where appropriate;

are aware of the
potential social impact of
automation in areas
aligned to the brief.

use some innovative
thinking in design and
development.

show some evidence of
appropriate use of high
level data structures;
implement a limited
modular approach and
avail of opportunities to
create well-structured
code;

minimise duplication and
enhances readability with
well-placed comments;
have partially tested and
evaluated their programs
for robustness, correct
logic, functionality and
good Ul design.

adapt existing knowledge
or solutions to solve new
problems;

evaluate outcomes
systematically from
different ideas and
solutions.

investigate a narrow
spectrum of alternative
automated solutions;
display a tendency to
stick with a solution, with
limited application of
heuristics or workarounds

show an ability to
tolerate ambiguity and as
creators of artefacts,
demonstrate limited
understanding around
the ethical, adaptive and
assistive implications of
automation, where
appropriate;

are somewhat aware of
the potential social
impact of automation in
areas aligned to the brief.

27

tend to avoid challenges
that have multiple steps
or parts to them.

show limited or no
evidence of appropriate
use of high level data
structures;

do not implement a
modular approach nor
attempt to make
programs more
structured;

duplicate code and do
not use comments in an
informative way;

has not tested nor
evaluated their programs,
to any meaningful level,
for robustness, correct
logic, functionality or Ul
design.

show limited application
of previous learning to
new problems;
demonstrate a limited
systematic approach to
solving problems.

do not deviate from an
original plan to use a
particular automated
solution;

display minimal evidence
of workarounds when
faced with problems.

have difficulty accepting
ambiguity in situations;
show little or no evidence
of ethical, adaptive and
assistive considerations in
their artefacts;

are largely unaware of
the potential social
impact of automation in
areas aligned to the brief.

Final examination

The final examination component will be comprised of computer-based practical examination
and a written examination. It will consist of a range of question types. The senior cycle key
competencies, developed through the study of Leaving Certificate Computer Science, are
embedded in the learning outcomes and will be assessed in the context of the learning
outcomes. The final examination component will include a selection of questions that will

assess, appropriate to each level, the learning described in the three strands of study.

Reasonable accommodations

This Leaving Certificate Computer Science specification requires that students engage with
the nature of the subject on an ongoing basis throughout the course. The assessment for
certification in Leaving Certificate Computer Science involves a written and computer-based
practical examination worth 60% of the available marks and an additional component worth
40%. In this context, the scheme of Reasonable Accommodations, operated by the SEC, is
designed to assist students who would have difficulty in accessing the examination or
communicating what they know to an examiner because of a physical, visual, sensory,
hearing, or learning difficulty. The scheme assists such students to demonstrate what they
know and can do, without compromising the integrity of the assessment. The focus of the
scheme is on removing barriers to access, while retaining the need to assess the same
underlying knowledge, skills, values, and dispositions as are assessed for all other students
and to apply the same standards of achievement as apply to all other students. The
Commission makes every effort when implementing this scheme to accommodate individual
assessment needs through these accommodations.

More detailed information about the scheme of Reasonable Accommodations in the
Certificate Examinations, including the accommodations available and the circumstances in
which they may apply, is available from the SEC’s Reasonable Accommodations Section.
Before deciding to study Leaving Certificate Computer Science, students, in consultation with
their school and parents/guardians, should review the learning outcomes of this specification
and the details of the assessment arrangements. They should carefully consider whether or
not they can achieve the learning outcomes, or whether they may have a special educational
need that may prevent them from demonstrating their achievement of the outcomes, even
after reasonable accommodations have been applied. It is essential that if a school believes
that a student may not be in a position to engage fully with the assessment for certification

arrangements, they contact the SEC.

28

Leaving Certificate grading

Leaving Certificate Computer Science will be graded using an 8-point grading scale. The

highest grade is a Grade 1; the lowest grade is a Grade 8. The highest seven grades (1-7)

divide the marks range 100% to 30% into seven equal grade bands 10% wide, with a grade 8

being awarded for percentage marks of less than 30%. The grades at Higher level and

Ordinary level are distinguished by prefixing the grade with H or O respectively, giving H1-
H8 at Higher level, and O1-08 at Ordinary level.

Table 5: Leaving Certificate Grading

H1/01
H2/02
H3/03
H4/04
H5/05
H6/06
H7/07
H8/08

29

90-100
80<90
70<80
60<70
50<60
40<50
30<40
<30

Appendix 1 Glossary of action verbs

This glossary is designed to clarify the learning outcomes. Each action verb is described in

terms of what the learner should be able to do once they have achieved the learning

outcome. This glossary will be aligned with the command words used in the assessment.

Action verb Students should be able to

Analyse
|Co||a borate
Compare
Consider

Create

Describe

Discuss

Evaluate (data)

Evaluate (ethical
judgement)

Explain

Examine

Identify

Illustrate

Investigate

Interpret

List
Outline

study or examine something in detail, break down in order to bring out
the essential elements or structure; identify parts and relationships, and
to interpret information to reach conclusions

work jointly with another or others

give an account of the similarities and/or differences between two (or
more) items or situations, referring to both (or all) of them throughout

describe patterns in data; use knowledge and understanding to interpret
patterns, make predictions and check reliability

bring something into existence; to cause something to happen as a
result of one’s actions

develop a detailed picture or image of, for example a structure or a
process, using words or diagrams where appropriate; produce a plan,
simulation or model

offer a considered, balanced review that includes a range of arguments,
factors or hypotheses; opinions or conclusions should be presented
clearly and supported by appropriate evidence

collect and examine data to make judgments and appraisals; describe
how evidence supports or does not support a conclusion in an inquiry or
investigation; identify the limitations of data in conclusions; make
judgments about the ideas, solutions or methods

collect and examine evidence to make judgments and appraisals; describe
how evidence supports or does not support a judgement; identify the
limitations of evidence in conclusions and make judgments about ideas,
solutions or methods

give a detailed account including reasons or causes

consider an argument or concept in a way that uncovers the assumptions
and interrelationships of the issue

recognise patterns, facts, or details; provide an answer from a number of
possibilities; recognise and state briefly a distinguishing fact or feature

use examples to describe something

observe, study, or make a detailed and systematic examination, in order
to establish facts and reach new conclusions

use knowledge and understanding to recognise trends and draw
conclusions from given information

provide a number of points, with no elaboration

give the main points; restrict to essentials

30

Action verb Students should be able to

Recognise identify facts, characteristics or concepts that are critical
(relevant/appropriate) to the understanding of a situation, event, process
or phenomenon

Reflect give thoughtful consideration to actions, experiences, values and ’
learning in order to gain new insights and make meaning

Solve find an answer through reasoning

Suggest propose a solution, hypothesis or other possible answer

|Synthesise combine different ideas to create new or enhanced understanding |

Understand have and apply a well-organised body of knowledge

Use apply knowledge or rules to put theory into practice

Appendix 2 Glossary of core concepts

Core concept Meaning

Algorithm An algorithm is a sequence of steps designed to accomplish a specific
task. Algorithms are translated into programs, or code, to provide
instructions for computing devices. The words programming, coding and
programming language are understood as follows:

e Programming is the craft of analysing problems and designing,
writing, testing and maintaining programs to solve them

e Coding is the act of writing computer programs in a programming
language

e A programming language is the formal language used to give a
computer instruction.

Computer systems Computer systems consists of hardware, software, computational
processes, networks and users.

Computer modelling |Using computing technologies to represent an idea, structure, process or
system, and using models to test scenarios, explain, make predictions and
run simulations, recognising that all models have limitations.

Data Data is a collection of any information that can be processed or analysed
by a computer. Data can be collected with both computational and non-
computational tools and processes.

Machine learning A subset of Al that includes the use of algorithms and mathematical
techniques that enable machines to improve at tasks from experience.

Software evaluation |Software evaluation is the process of determining if the program or
combination of programs is the best possible solution to a given problem
or task. The evaluation process should include factors such as feasibility,
efficiency, and ethical use.

Software testing Software testing is the process of finding and correcting errors (bugs) in a
program or system and ensuring that the program produces the intended
output. Debugging includes identifying errors, gaps, and missing

31

| Core concept

Meaning
requirements.

Appendix 3 Abbreviations

Abbreviation

What it stands for

ASCII American Standard Code for Information Interchange
CPU Central Processing Unit
CSS Cascading Style Sheet
DBMS Database Management System
GUI Graphical User Interface
HTML HyperText Markup Language
HTTPS HyperText Transfer Protocol Secure
[@] Input Output
IP Internet Protocol
ML Machine Learning
PC Personal Computer
RSA algorithm Rivest Shamir Adleman algorithm
TCP Transmission Control Protocol
www World Wide Web

32

