

Draft Specification for Leaving
Certificate Computer Science
For consultation

September 2025

Contents

Senior cycle ... 2

Rationale .. 3

Aims .. 4

Continuity and progression .. 4

Junior Cycle ... 4

Beyond Senior Cycle ... 5

Student learning in senior cycle .. 5

Key competencies .. 6

Strands of study and learning outcomes ... 10

Strand 1: Practices and principles ... 14

Strand 1 Learning Outcomes ... 14

Strand 2: Core concepts ... 16

Strand 2 Learning Outcomes ... 16

Strand 3: Computer science in practice ... 18

Strand 3 Learning Outcomes ... 18

Applied Learning Task 1 : Interactive websites ... 18

Applied Learning Task 2: Analytics and modelling .. 19

Applied Learning Task 3: Embedded systems .. 20

Teaching for student learning .. 21

Assessment .. 23

Assessment for certification .. 23

Coursework Project ... 24

Descriptors of Quality for the Coursework Project in Computer Science 26

Final examination ... 28

Reasonable accommodations .. 28

Leaving Certificate grading .. 29

Appendix 1 Glossary of action verbs ... 30

Appendix 2 Glossary of core concepts .. 31

Appendix 3 Abbreviations .. 32

2

Senior cycle
Senior cycle aims to educate the whole person and contribute to human flourishing. Students’

experiences throughout senior cycle enrich their intellectual, social and personal

development and their overall health and wellbeing. Senior cycle has 8 guiding principles.

Senior Cycle Guiding Principles

Wellbeing and relationships Choice and flexibility

Inclusive education and diversity Continuity and transitions

Challenge, engagement and creativity Participation and citizenship

Learning to learn, learning for life Learning environments and partnerships

These principles are a touchstone for schools and other educational settings, as they design

their senior cycle. Senior cycle consists of an optional Transition Year, followed by a two-year

course of subjects and modules. Building on junior cycle, learning happens in schools,

communities, educational settings, and other sites, where students’ increasing independence

is recognised. Relationships with teachers are established on a more mature footing and

students take more responsibility for their learning.

Senior cycle provides a curriculum which challenges students to aim for the highest level of

educational achievement, commensurate with their individual aptitudes and abilities. During

senior cycle, students have opportunities to grapple with social, environmental, economic,

and technological challenges and to deepen their understanding of human rights, social

justice, equity, diversity and sustainability. Students are supported to make informed choices

as they choose different pathways through senior cycle and every student has opportunities

to experience the joy and satisfaction of reaching significant milestones in their education.

Senior cycle should establish firm foundations for students to transition to further, adult and

higher education, apprenticeships, traineeships and employment, and participate

meaningfully in society, the economy and adult life.

The educational experience in senior cycle should be inclusive of every student, respond to

their learning strengths and needs, and celebrate, value, and respect diversity. Students vary

in their family and cultural backgrounds, languages, age, ethnic status, beliefs, gender, and

sexual identity as well as their strengths, needs, interests, aptitudes and prior knowledge,

skills, values and dispositions. Every student’s identity should be celebrated, respected, and

responded to throughout their time in senior cycle.

3

At a practical level, senior cycle is supported by enhanced professional development; the

involvement of teachers, students, parents, school leaders and other stakeholders; resources;

research; clear communication; policy coherence; and a shared vision of what senior cycle

seeks to achieve for our young people as they prepare to embark on their adult lives. It is

brought to life in schools and other educational settings through:

• effective curriculum planning, development, organisation, reflection and evaluation

• teaching and learning approaches that motivate students and enable them to improve

• a school culture that respects students and promotes a love of learning.

Rationale
Computer science is the foundation of all computing technologies. It involves the study of

computing and the design and development of computer systems. Computing technologies

have become highly integrated into most aspects of modern life from enhancing patient and

medical care and changing how we are entertained, to driving advancements in digital arts

and computational sciences. These technologies enable us to communicate instantly across

the globe and find new and exciting ways to assist human enterprise. Systems are being

designed and developed that are becoming more intelligent, adaptive and autonomous,

presenting both benefits and challenges for society.

In this context, the study of computer science is relevant to lives of all students. The Leaving

Certificate Computer Science specification is designed to be inclusive, and to accommodate

varying levels of previous student experiences. It is a student-centred course that encourages

creativity, self-expression, and embraces a human-centred approach to design and

development that prioritises the needs of the users. Computational thinking is one of the

most fundamental aspects of computer science, through which students learn abstraction,

decomposition, pattern recognition, algorithmic thinking and logical reasoning. They learn

how to use computing technologies to solve problems and automate processes, creating their

own computer programs and artefacts in areas relevant to their own interests and lives.

Students come to understand how computer science impacts the world around us, gaining

insights into how algorithms work while also creating their own. The study of computer

science deepens the students’ awareness of the ethical and social role of computers in

society, supporting them to become informed users and creators of technologies. Through

Applied Learning Tasks (ALTs), students can choose their own areas of investigation, and in

the process develop project management skills and collaborative problem-solving strategies.

4

Students studying this subject learn to think and create in ways that are valuable and

beneficial to them well beyond the computer science classroom.

Aims
Leaving Certificate Computer Science aims to empower and develop students as creators and

users of computing technologies. It aims to nurture a life-long engagement with

developments in computer science, with students becoming more informed about current

and emerging computing technologies.

More specifically, Leaving Certificate Computer Science aims to empower students to:

• develop computational thinking skills to solve problems, and to design and evaluate

solutions using computing technologies

• put the principles and concepts of computer science into practice while developing the

necessary key competencies

• design and build human-centred computing technologies, independently and

collaboratively, in ways that are creative and responsible

• be more critically aware of the ethical, social and environmental impacts of computing

technologies on their personal lives and on society.

Continuity and progression

Leaving Certificate Computer Science builds on the learning from early childhood education

through to the junior cycle curriculum. When students learn to think computationally they

become better able to conceptualise, understand and use computer-based technology, and so

are better prepared for today’s world and the future.

Junior Cycle

Many of the Statements of Learning at junior cycle relate to Leaving Certificate Computer

Science, especially those statements focused on problem solving, creating, communication,

and understanding the role and contribution of technology in society. The skills developed

during junior cycle are further enhanced in Leaving Certificate Computer Science through

opportunities where students can consistently work and learn with others, stimulate their

creativity through digital technology, evaluate solutions to issues that are meaningful to their

lives, develop resilience and manage their own learning.

5

Beyond Senior Cycle

Leaving Certificate Computer Science supports students in their understanding of current

computer technologies and prepares them for emerging technologies. The learning from this

subject is becoming more essential and beneficial to the future pathways of almost all

students. It also prepares students for a range of careers directly related to computer science

from software engineering to web development. Computer science nurtures a broad range of

transferable and trans-disciplinary competences such as problem solving, independent and

self-regulated learning, human-centred creative design and collaborative problem-solving.

These skills, combined with a technical proficiency and an understanding of Artificial

Intelligence (AI), can equip students to embrace the opportunities and challenges ahead, and

encourage them to participate meaningfully in society. Exploring the benefits and drawbacks

of computing technologies, and their ever-increasing impact on people and societies,

develops students as ethical users and creators of technology.

Student learning in senior cycle
Student learning in senior cycle consists of everything students learn within all of the

subjects and modules they engage with and everything students learn which spans and

overlaps across all of their senior cycle experiences. The overarching goal is for each student

to emerge from senior cycle more enriched, more engaged and more competent as a human

being than they were when they commenced senior cycle.

For clarity, the learning which spans across all of their senior cycle experiences is outlined

under the heading ‘key competencies’. The learning which occurs within a specific subject or

module is outlined under the heading ‘strands and learning outcomes’. However, it is vital to

recognise that key competencies and subject or module learning are developed in an

integrated way. By design, key competencies are integrated across the rationale, aims,

learning outcomes and assessment sections of specifications. In practice, key competencies

are developed by students in schools via the pedagogies teachers use and the environment

they develop in their classrooms and within their school. Subjects can help students to

develop their key competencies; and key competencies can enhance and enable deeper

subject learning. When this integration occurs, students stand to benefit:

• during and throughout their senior cycle

• as they transition to diverse futures in further, adult and higher education,

apprenticeships, traineeships and employment, and

6

• in their adult lives as they establish and sustain relationships with a wide range of

people in their lives and participate meaningfully in society.

When teachers and students make links between the teaching methods students are

experiencing, the competencies they are developing and the ways in which these

competencies can deepen their subject specific learning, students become more aware of the

myriad ways in which their experiences across senior cycle are contributing towards their

holistic development as human beings.

Key competencies
Key competencies is an umbrella term which refers to the knowledge, skills, values and

dispositions students develop in an integrated way during senior cycle.

Figure 1 The components of key competencies and their desired impact

The knowledge which is specific to this subject is outlined below under ‘strands of study and

learning outcomes’. The epistemic knowledge which spans across subjects and modules is

incorporated into the key competencies.

7

Figure 2 Key Competencies in Senior Cycle, supported by literacies and numeracy

These competencies are linked and can be combined; can improve students’ overall learning;

can help students and teachers to make meaningful connections between and across

different areas of learning; and are important across the curriculum.

The development of students’ literacies and numeracy contributes to the development of

competencies and vice-versa. Key competencies are supported when students’ literacies and

numeracy are well developed and they can make good use of various tools, including

technologies, to support their learning.

The key competencies come to life through the learning experiences and pedagogies

teachers choose and through students’ responses to them. Students can and should be

8

helped to develop their key competencies irrespective of their past or present background,

circumstances or experiences and should have many opportunities to make their key

competencies visible. Further detail in relation to key competencies is available at

https://ncca.ie/en/senior-cycle/senior-cycle-redevelopment/student-key-competencies/.

In Leaving Certificate Computer Science, thinking and solving problems is supported when

students are encouraged to seek challenges, make informed decisions, identify problems and

evaluate computational solutions to issues that are relevant and meaningful to their lives.

The student agency embedded in the structure of the ALTs enables students to apply

computational thinking strategies in ways that range from automation of simple everyday

tasks to how they might address complex societal issues and manage uncertainty. Students

learn and apply the practices and principles of computer science, and are encouraged to work

in ethical and responsible ways. The development of literacies relevant to the tasks and

numeracy supports the development of key competencies and vice-versa, and improves the

effectiveness of students in applying thinking strategies to their chosen tasks.

Leaving Certificate Computer Science is a collaborative discipline which can readily transfer

into other senior cycle subjects and future careers. The specification is designed to provide

students with practical opportunities to learn how to work with others while developing

project management skills. Through working with others on design and development tasks,

students can learn to resolve disagreements, celebrate diversity and manage themselves and

the emotions of working with others towards a collective goal.

Students learn how to recognise patterns and use abstraction techniques, decompose and

solve problems, think algorithmically, manage data, and evaluate digital artefacts.

Programming, and the development of their own computing technologies, provide motivation

for students and in the process they learn the importance of feedback, and how to respond

to feedback, and how to persevere and to be more resilient. The design and construction of

their own computing technologies requires an open-mindedness, a sense of playfulness and

an ability to incorporate multiple possibilities, perspectives and solutions.

The iterative design process encourages students to see mistakes as feedback where the

needs of users can be met in an adaptable and flexible manner. Computer science has vast

applications, and managing learning and self can be further developed through appropriate

open-ended task. Students can improve how they manage their learning, respond to

uncertainties in outcomes and build connections to other subjects and future careers. This

https://ncca.ie/en/senior-cycle/senior-cycle-redevelopment/student-key-competencies/

9

versatility of the subject can in turn enhance student literacies and numeracy, and strengthen

student’s digital, data and social media literacies.

The collaborative learning approach requires effective communication and healthy group

dynamics. The ALTs, including the additional assessment component (AAC), can often involve

students taking account of different perspectives and responding to the feedback from the

target user or audience. For example, students design user interfaces, in response to user

needs, that are clear and easy to use, and they learn by design how to scaffold their programs

with explanatory comments. Designing a computational artefact involves students

consistently communicating their design process and explaining how their artefact functions.

Leaving Certificate Computer Science is designed to incorporate student agency. This

approach, particularly through the ALTs, aims to support students in achieving successful

outcomes individually and collaboratively. Students can become more confident in their own

abilities, develop internal and external standards and improve self-efficacy through the

computational thinking strategies they learn. The opportunity to work on tasks of their own

choosing, within a collaborative classroom, nurtures enjoyment and empowers risk-taking

which in turn supports students in being creative and innovative.

10

Strands of study and learning outcomes
There are three strands in the Computer Science specification: Practices and principles, Core

concepts and Computer science in practice. All three strands are interwoven and are

designed to be studied concurrently at different stages of the course. As shown in Figure 3,

the strands are not intended to be studied in a linear order. Learning in strands 1 and 2 is

applied and developed through collaborative ALTs outlined in strand 3. In that way, the ALTs

provide further practical context. Student engagement with the ALTs should increase in

complexity and sophistication, thus developing and deepening the learning from strands 1

and 2.

Strand 1: Practices and principles

The overarching practices and principles of computer science are the behaviours and ways of

thinking that computer scientists use. This strand underpins the specification and is

fundamental to all learning activities. By becoming familiar with, and fluent in, the practices

and principles that underpin good practice, students develop their ability to manage

themselves and their learning across the subject.

Figure 3 : Structure of Leaving Certificate Computer Science

11

Strand 2: Core concepts

The core concepts of Leaving Certificate Computer Science represent major areas in the field

of computer science: algorithms, data, computer systems, models, machine learning, and

testing and evaluation. Students engage with the core concepts theoretically and practically

in this strand. As students progress in their learning, they engage in the ALTs outlined in

strand 3. Conceptual and practical classroom-based learning are combined with experimental

computer-based learning throughout the two years of the course.

Strand 3: Computer science in practice

Computer science in practice provides multiple opportunities for students to apply the

practices and principles and the core concepts. Students work in teams to carry out ALTs

over the duration of the course, each of which results in the creation of real and/or virtual

computational artefacts. These artefacts should be human-centred, and related to the

students’ lives and interests, while possibly being beneficial to the community and to society

in general. Examples of computational artefacts students can create include programs,

models, games, web pages, simulations, visualisations, digital animations, embedded systems,

and apps.

The three ALTs explore the following contexts: Interactive websites, Analytics and modelling,

and Embedded systems. They provide opportunities for students to develop their theoretical

and procedural understanding as they grapple with computer science practices, principles

and core concepts in increasingly sophisticated applications. The structure is summarised in

Table 1.

Strand 1: Practices and
principles

Strand 2: Core concepts Strand 3: Computer science
in practice

➢ Computational thinking

➢ Computers and society

➢ Designing and
developing

➢ Algorithms

➢ Computer systems

➢ Modelling and machine
learning

➢ Data

➢ Evaluation and testing

➢ ALT1: Interactive
websites

➢ ALT2: Analytics and
modelling

➢ ALT3: Embedded
systems

Table 1: Structure of Leaving Certificate Computer Science

12

The outputs from each ALT are computational artefacts created using the design and

development process shown in Figure 4, and a concise report outlining its development. In the

report, students outline where and how the core concepts were used. The structure of the

reports should reflect the design and development process. Initial reports could be in the form

of structured presentations to the whole class. As students progress, their reports should

become more detailed and more varied in the format of the reports. Reports and computational

artefacts are collected in the student’s digital portfolio, which in itself becomes an additional

resource over the two years of the course.

Iterate

Figure 4: Overview of a design and development process

13

Leaving Certificate Computer Science is designed for a minimum of 180 hours of class

contact time. Table 2 outlines the design of learning outcomes for ordinary and higher level.

Table 2: Design of learning outcomes for Ordinary and Higher level

Ordinary level Higher level

Only the learning outcomes presented in
normal type.

Students engage with a broad range of
knowledge, mainly concrete in nature, but
with some elements of abstraction or
theory.

Students demonstrate and use a moderate
range of practical and cognitive skills and
tools and to plan and develop simple
investigative strategies.

Students select from a range of procedures
and apply known solutions to a variety of
problems in both familiar and unfamiliar
contexts.

Students design and produce computational
artefacts that serve a useful purpose.

All learning outcomes including those in bold
type.

Students engage with a broad range of
knowledge, including theoretical concepts and
abstract thinking, with significant depth in
some areas.

Students demonstrate and use a broad range
of specialised skills and tools to evaluate and
use information, to plan and develop
investigative strategies, and to determine
solutions to varied, unfamiliar problems.

Students identify and apply skills and
knowledge in a wide variety of both familiar
and unfamiliar contexts.

Students design and produce computational
artefacts that serve a useful purpose.

Each strand begins with an overview followed by a table containing the learning outcomes.

The right-hand column contains learning outcomes which describe the knowledge, skills,

values and dispositions students should be able to demonstrate after a period of learning. The

left-hand column outlines specific areas that students learn about. Taken together, these

provide clarity and coherence with the other sections of the specification.

14

Strand 1: Practices and principles
The practices and principles of computer science describe the behaviours and ways of

thinking that computationally-literate students use to fully engage in a data-rich and

interconnected world. Computational thinking, at the heart of computer science practices, is

a problem-solving process that involves designing solutions that exploit the power of

computers. The practices and principles are encountered in a context-based approach related

to social, professional, and scientific contexts. Learning about the role of computers in society

broadens the student’s understanding of computer science and make it more meaningful and

relevant. In learning about designing and developing, students come to appreciate the

challenges and fulfilment involved in creating artefacts and in project management.

Strand 1 Learning Outcomes

Students learn about Students should be able to
Computational thinking

Techniques of computational thinking,
such as:

• Abstraction
• Decomposition
• Pattern recognition/ Generalisation
• Logical reasoning
• Algorithmic thinking

Programming concepts: input-process-
output, variables, operators, conditionals,
loops, modularisation

Computer programs: How to read, write,
modify, design and test

1.1. solve problems using computational thinking

techniques

1.2. explain the operation of a variety of algorithms

1.3. create algorithms to implement chosen solutions

1.4. create computer programs using programming
concepts

Computing technologies to solve
problems and to automate solutions

Heuristics

1.5. explain how the power of computing enables

different solutions to difficult problems

1.6. discuss when heuristics should and could be

used, and outline limitations

1.7. evaluate alternative computational solutions to

problems

Computers and society

Impacts on society of computing
technologies, including cultural and
ethical considerations

1.8. discuss the relationships between computing

technologies and society

1.9. describe the role that adaptive and assistive

technology can play in the lives of people with

additional needs

15

Students learn about Students should be able to
The integration of computing
technologies into almost all aspects of
modern living

1.10. recognise the diverse roles, careers and

organisations that use computing

technologies

Factors empowering AI that include
access to data, computing power, and
new algorithms and models

Current and emerging AI systems, such as
agents, assistants, robotics, natural
language processing, that can process
and generate language, images, video and
other forms of human creativity

1.11. explain factors empowering AI systems

1.12. discuss how machine learning (ML) algorithms

and AI systems are used, and could be used,

by societies

1.13. illustrate and describe a variety of AI systems

Costs and benefits of automating to
include algorithmic efficiency,
sustainability and decision-making

1.14. evaluate the costs and benefits of the use of

computing technology in automating

processes

Computing developments:
• Turing machine, First electronic

computers, Solid state electronics,
Integrated circuits, the evolution of
programming languages, the
personal computer (PC), modern
devices, cloud computing

• Internet, World wide web (www),
cybersecurity, AI including machine
and deep learning

• Emerging trends that could shape
future computing technologies

1.15. outline the importance of developments that

have shaped modern computing and consider

emerging trends

Designing and developing

The design and development process

Working in a team, assigning roles and
responsibilities, such as: analyst, project
manager, designer, developer, tester, user
experience

Software development: approaches (agile
and waterfall), life cycles and design
stages

1.16. identify features of both staged and iterative

design and development processes

1.17. collaborate, within a team, in a variety of

roles and responsibilities, to complete

computing tasks

1.18. use modular design to carry out a specific

function, in hardware and/or software

1.19. describe systems using abstraction, and

explain the relationship between whole and

parts

User-centred design
Usability and quality features that
include:

• communication with user

1.20. consider the perspectives of the variety of

stakeholders and possible end users

1.21. consider the quality of the user experience

16

Students learn about Students should be able to

• consistency
• user control
• aesthetics
• managing errors.

Communication and reporting

when interacting with computing

technologies, including the role of a user

interface and the factors that contribute to its

usability

1.22. compare two user interfaces and identify

different design decisions that shape the user

experience

1.23. reflect on the design and development

process

Strand 2: Core concepts
This strand introduces five core concepts that represent major content areas in the field of

computer science: algorithms, computer systems, data, modelling and machine learning, and

evaluation and testing. The core concepts are developed theoretically and applied practically.

In this way, conceptual classroom-based learning is intertwined with experimental computer-

based learning throughout the two years of the course.

Strand 2 Learning Outcomes

Students learn about Students should be able to
Algorithms

Pseudo code and flowcharts
Algorithms: unplugged and plugged

Features of algorithms such as sequencing,
selection, iteration and non-recursive and
recursive modularisation

2.1. outline the functionality of an algorithm

through pseudo code and flowcharts

2.2. synthesise existing algorithms and create new

ones to solve a range of problems and to fulfil

specific requirements

Sorting: Selection sort, Bubble sort,
Quicksort
Search: Linear search, Binary search

Algorithmic efficiency regarding potential
number of operations involved for similar
inputs

2.3. use search and sorting algorithms and compare

the limitations and advantages of each

algorithm

2.4. compare algorithms on correct functionality

and algorithmic efficiency

Computer systems

Components of a computer: basic von
Neumann architecture and operation
including CPU-Bus-Memory, Fetch-
Execute Cycle, CPU Speed and IO

2.5. describe the different layers and components

of a computer including the operation of those

components

17

Students learn about Students should be able to
Devices

Computer layers: Hardware,
Operating System, Application, User

2.6. compare digital and analogue inputs and

outputs

Units of logic gates: from individual types
to half-adder

Numerical operations: Addition of
binary numbers and conversion
between binary, decimal and
hexadecimal.

2.7. describe the different types of logic gates and

arrange into larger units to perform more

complex tasks

2.8. explain why the binary and hexadecimal

number systems are used in digital computing

and perform basic numerical operations

Web infrastructure:
• the client-server model
• communication protocols such as

HTTP, HTTPS, TCP/IP stack
• layers: application, transport,

network and physical
• basic cloud computing – scalability

and flexibility

2.9. explain what is meant by the world wide web,

and outline what makes up the web

infrastructure

Data

Data Types (Python): Numeric (int, float),
Text (str), Sequence (list), Boolean (bool)

Standard character sets: ASCII and
Unicode
Simple ciphers: Caesar, substitution and
Vignère
RSA algorithm

2.10. use data types that are common to procedural

high-level languages

2.11. consider the importance of having standard

character sets

2.12. use a simple cipher to encrypt/decrypt a

message and outline how the RSA algorithm

works

Data sources including balance, ethical
implications of collecting data and bias in
datasets

Data storage and management:
Database management systems (DBMS)
• Flat file storage and retrieval
• Relational DBMS

2.13. use a flat file database to collect, store, clean

and sort data

2.14. describe different approaches to data storage

and management

2.15. compare relational with non-relational DBMS

Modelling and machine learning

Computer models and running simulations

Model qualities: Purpose, input data,
assumptions, and model outputs

2.16. outline the benefits and limitations of

modelling and running simulations in relevant

situations

2.17. evaluate the qualities of models

18

Students learn about Students should be able to

Decision-making algorithms:
• classical, rules-based
• supervised ML algorithms and

libraries: decision-tree and multiple
(linear) regression only

2.18. use decision-making algorithms

2.19. examine how data can influence the outputs

and decisions of models

Evaluation and testing

Debugging, fixing and evaluating
automated solutions

Qualities of programs such as functionality,
algorithmic efficiency, modularisation,
usability and meeting user needs

2.20. identify warnings and errors in computer code

and modify as required

2.21. reflect critically on, and identify limitations in,

completed programs and suggest possible

improvements

Software Testing: Use case, Unit, Function,
System (alpha and beta)

2.22. evaluate programs using software testing

Strand 3: Computer science in practice
Computer science in practice provides multiple opportunities for students to use their

conceptual understanding in practical applications. Students engage with three team-based

ALTs during the course. Student groups design and develop computational artefacts that are

personally relevant or beneficial to their community and society in general. Examples of

computational artefacts that students can create include programs, models, games,

simulations, visualisations, digital animations, embedded systems, and apps. Students are

expected to document, reflect and present on each ALT, as part of their ongoing and

managed digital portfolio.

Strand 3 Learning Outcomes

Applied Learning Task 1 : Interactive websites

Design is one of the key practices and principles of computer science. As designers and creators

of technology, students can be innovative and expressive through the creation of artefacts.

Computer science is also an information-intensive discipline that involves the selection,

evaluation, recording and presentation of information. Students come to see the richness and

complexity of how to communicate with, and provide information about, the world around

them. In this ALT, students develop a website which the user can interact with. The students use

HTML/CSS to build their website, and they can enhance it using other technologies. Through

planning and designing an interactive application that can meet a set of user needs, students

19

can experience first-hand the design and development process, while enhancing their

knowledge of the role of computing systems.

Students learn about Students should be able to
ALT1: Interactive websites

Information systems

User-centred and web design

Graphical User Interfaces (GUIs),
HTML/CSS

Design and development process

3.1. understand and list user needs and requirements

before defining a solution

3.2. create a user interface taking the quality of the

user experience into account

3.3. create an interactive application, using

HTML/CSS, that can display information to meet a

set of user needs

Applied Learning Task 2: Analytics and modelling

Often with data, it can be challenging to see patterns, spot trends, and understand factors

shaping the data. Data analytics and computer models can assist humans in gaining insights. In

this ALT, students develop systems to analyse, interpret, and gain insights from data. They

identify interdisciplinary topics, pose questions, gather, represent, and analyse data, build

models, and test scenarios. Problems or issues that are not amenable to analytics can often be

analysed through modelling, and so students could for example create two artefacts designed

to explore modelling and analytics separately. Students could also create a single,

interconnected artefact that uses the same dataset for both analytics and modelling. This task

deepens students’ understanding of the practices and principles of computer science while also

enabling students to investigate issues of relevance to them.

Students learn about Students should be able to
ALT2: Analytics and modelling

Data preparation process: gather,
structure and transform data for
analysis

Statistical measures such as frequency,
averages, spread

3.4. use the data preparation process and

represent data graphically

3.5. create a data-based model that can test

scenarios and make predictions

20

Students learn about Students should be able to
Running simulations and evaluating
outcomes
Using data to inform and gain insights

3.6. analyse and interpret data and model

outputs, in a way that informs decision-

making

Applied Learning Task 3: Embedded systems

The design and application of computer hardware and software are a central part of computer

science. In this ALT, students will implement a system that uses sensors and controls inputs

and outputs as part of an embedded system. By building the component parts of a computer

system, students will deepen their understanding of how computers work and how they can

be embedded in our everyday environments.

Students learn about Students should be able to
ALT3: Embedded systems

Computer systems

Computing and controlling inputs

and outputs

How to use and manage data –

digital and analogue

Design and development process

3.7. use inputs and outputs within an embedded

system

3.8. create a program that utilises inputs and

outputs

3.9. create applications using embedded systems

21

Teaching for student learning
The three strands of learning are designed to be interwoven and interconnected. The ALTs of

strand 3 in particular are further designed to allow for interconnection and they are intended

to be the lens through which students experience the course. Student learning in Leaving

Certificate Computer Science can be best achieved through teaching approaches aligned to

the design and intention of the specification. Teachers are best placed to make professional

judgements on how to facilitate an effective balance for the students of theoretical, applied

and problem-based learning, project management and authentic collaborative activities.

Teaching for student learning therefore requires a corresponding balance of teaching

strategies, decided by the teacher as being most beneficial to the students, while developing

necessary key competencies.

Through ALTs, students can work together to apply the practices, principles and core concepts

of the course. In addition to cumulative learning across the ALTs, and other strands of study,

students have opportunities to frequently engage with learning outcomes in a variety of ways.

This pedagogical approach opens the course for students to put design and development

processes into practice, develop project management skills and collaborate on problem-solving

strategies, while also learning how to manage their own progress and learning. Teaching

through the lens of ALTs further enables students to make connections between computer

science, other subjects, and everyday experiences, as they design and build computational

artefacts that are personally relevant to them or their peers, to their community or to society

in general.

Teachers supporting self-directed learning and reflection can enable students to plan, monitor,

and evaluate their own learning and improve self-efficacy. Reporting and presenting on their

artefacts, and managing their digital portfolio, develops communication skills, offers moments

of reflection and celebration of achievements and enhances student awareness of more diverse

perspectives.

Teachers can work with students at the investigation and planning phase of the design and

development process to stimulate ideas and nurture students towards relevant tasks. The

problem-based nature of the course, underscored by explicit instruction and inquiry-based

approaches, offers genuine opportunities for a variety of summative and formative

assessments. In addition, students can be encouraged to move from broad curiosity to a critical

understanding of computer science, offering many authentic moments for peer- and self-

assessment.

22

Learning in computer science needs, as far as is practical, to be applied to problem solving and

design exercises. Teachers can use their judgement to capture opportunities to develop the

theoretical foundations of the students’ practice, particularly through the ALTs. Other teaching

strategies that can support learning in computer science include pair programming, activity-

based learning, scaffolded learning strategies to support students becoming confident

programmers, posing questions of varied cognitive load and facilitating peer-to-peer teaching.

Students vary in the amount and type of support they need and the use of inclusive

pedagogies, such as differentiated instruction, will provide such support. In addition,

strategies such as adjusting the level of skills required for tasks, varying pace and teacher

intervention, and increasing opportunities for peer support can help students interact at

appropriate levels.

23

Assessment
Assessment in senior cycle involves gathering, interpreting, using and reporting information

about the processes and outcomes of learning. It takes different forms and is used for a

variety of purposes. It is used to determine the appropriate route for students through a

differentiated curriculum, to identify specific areas of strength or difficulty for a given

student and to test and certify achievement. Assessment supports and improves learning by

helping students and teachers to identify next steps in the teaching and learning process.

As well as varied teaching strategies, varied assessment strategies will support student

learning and provide information to teachers and students that can be used as feedback so

that teaching and learning activities can be modified in ways that best suit individual learners.

By setting appropriate and engaging tasks, asking questions and giving feedback that

promotes learner autonomy, assessment will support learning and promote progression,

support the development of student key competencies and summarise achievement.

Assessment for certification

Assessment for certification is based on the rationale, aims and strands of study of this

specification. There are two assessment components: a final examination and an additional

assessment component (AAC) called the Coursework Project. The final examination will be at

higher and ordinary level and the Coursework Project will be based on a common brief. Each

assessment component will be set and examined by the State Examination Commission (SEC).

Examination questions will require students to demonstrate learning appropriate to each

level. Differentiation at the point of assessment will also be achieved through the stimulus

material used, and the extent of the structured support provided for examination students at

different levels.

Assessment programming languages

Python will be the programming language assessed in the final examination. There is no

restriction in choice of language used in the ALTs and Coursework Project.

24

 Table 3: Overview of assessment for certification

Assessment Component Weighting Level

Coursework Project 40% Common brief

 Final examination 60% Higher and Ordinary

Coursework Project

The Coursework Project provides an opportunity for students to display evidence of their

learning and to apply the practices and principles of computer science in ways that cannot be

readily assessed by the final examination. It is similar to the structure of the ALTs in strand 3

that students complete during the two years of the course. It is designed to be naturally

integrated into the flow of teaching and learning and to exploit its potential to be motivating

and relevant for students.

The Coursework Project must be carried out individually. While Leaving Certificate Computer

Science is designed to be experienced in a collaborative and supportive environment,

evidence of learning is individually submitted and assessed. It provides opportunities for

students to pursue their interests in this area and to make their own design and development

decisions. It can also further enhance the relevance of computer science to their lives. The

Coursework Project is based on learning outcomes from across the strands, with those of

strand 3 being particularly relevant. Students will have opportunities to apply, demonstrate

and expand the key competencies they have developed through this subject as they

complete this assessment.

The Descriptors of Quality in Table 4 are intended to provide insights into the broad

expectations for students completing the AAC.

Coursework Project brief

A Coursework Project brief will be published annually by the SEC in term one of year two. It

involves students creating an artefact and submitting it for marking to the SEC in term two of

year two. The brief will be thematic in nature and require students to apply their learning

25

from across all strands, with strand 3, Computer science in practice, being of particular

relevance. The digital portfolio built up by students during the course, with reports and

computational artefacts from the ALTs, will be a useful resource for students carrying out the

Coursework Project.

In addition to setting out the specific requirements of the Coursework Project, the brief will:

• allow students to develop their thinking and ideas on areas they would like to pursue,

related to the brief

• facilitate teachers and students in their planning

• give students opportunities to further deepen their learning in computer science while

also applying and expanding key competencies they have developed

• include stimulus material, and the basic and advanced features required of the

student’s artefact.

The dates for release of the brief and submission of the coursework will be set by the SEC

each year.1 The Coursework Project is designed to naturally integrate into the flow of

teaching and learning and the window for completion will be wide enough to allow for

flexibility within each classroom. Upon completion, students submit their coursework in a

format prescribed by the SEC. This includes a report submitted as an accessible HTML file,

where this format is appropriate for a given brief. The overview of the window for

completion of the Coursework Project is shown in Figure 5. A separate document, Guidance

to Support the Completion of the Coursework Project in Leaving Certificate Computer Science,

gives detailed guidance on the coursework assessment process, including a range of matters

related to the organisation, implementation, and oversight of the Coursework Project.

1 It is envisaged students will require up to 25 hours to complete the Coursework Project. Further
details are provided in the Guidance to Support the Completion of the Coursework Project in Leaving
Certificate Computer Science.

Coursework Project
brief released

Term 1 of 6th year

Coursework Project

Students work on their project
during the window

Coursework Project
submission

Term 2 of 6th year

Figure 5: Window for completion of the Coursework Project

26

Descriptors of Quality for the Coursework Project in Computer Science

The Coursework Project will require students to demonstrate proficiency in course content

and skills that are not easily assessed by the end-of-course examination. The assessment will

require students to create an innovative computational artefact, and to report on the work

and process involved. Students must acknowledge, through appropriate citations and

references, the source or author of all information or evidence taken from someone else’s

work, including the use of AI. There are six areas of achievement described in Table 4, which

reflect the learning from all strands and are particularly grounded in the practices and

principles of computer science. The six areas of achievement are: designing and developing,

computational thinking, computer programming, problem solving, appropriate use of

computing technologies and awareness of potential societal impacts.

Table 4: Descriptors of Quality: Coursework Project

 Students demonstrating
a high level of
achievement

Students demonstrating
a moderate level of
achievement

Students demonstrating
a low level of
achievement

Designing and

developing

iteratively design, model,
test, debug and evaluate
solutions;
choose appropriate ways
to represent and evaluate
solutions and final
products;
show considerable
evidence of research into
a rationale for
approaching the brief;
evaluate the performance
and potential of the final
artefact.

iteratively develop, test,
and debug solutions;
choose limited ways to
represent and evaluate
solutions and final
products;
show evidence of
research into a rationale
for approaching the brief;
evaluate the performance
of the final artefact.

do not iterate
significantly upon
solutions or the final
product;
test, debug and refine
solutions in a linear
fashion, lacking iterative
processes;
show limited evidence of
research into a rationale
for approaching the brief;
do not meaningfully
evaluate the final
artefact.

Computational
thinking

consider a variety of
alternative potential
solutions to the brief;
systematically solve
problems in the design
and development process
using a variety of
computational thinking
techniques;

consider potential
solutions to the brief;
solve problems in the
design and development
process using
computational thinking
techniques

consider limited
alternative solutions to
the brief;
solve problems as part of
a process with some
evidence of the use of
computational thinking
techniques;
show limited use of
innovative thinking and

27

use innovative thinking in
design and development.

use some innovative
thinking in design and
development.

tend to avoid challenges
that have multiple steps
or parts to them.

Computer
programming

show considerable
evidence of appropriate
use of high level data
structures;
implement a modular
approach extensively and
maximise opportunities
to create well-structured
code;
minimise duplication and
enhances readability with
informative, well-placed
comments;
have fully tested and
evaluated their programs
for robustness, correct
logic, functionality and
good UI design.

show some evidence of
appropriate use of high
level data structures;
implement a limited
modular approach and
avail of opportunities to
create well-structured
code;
minimise duplication and
enhances readability with
well-placed comments;
have partially tested and
evaluated their programs
for robustness, correct
logic, functionality and
good UI design.

show limited or no
evidence of appropriate
use of high level data
structures;
do not implement a
modular approach nor
attempt to make
programs more
structured;
duplicate code and do
not use comments in an
informative way;
has not tested nor
evaluated their programs,
to any meaningful level,
for robustness, correct
logic, functionality or UI
design.

Problem
solving

independently identify
and act on patterns in
problems and solutions;
seek out pre-existing
solutions, evaluating
ideas and/or solutions
from one problem
context to another.

adapt existing knowledge
or solutions to solve new
problems;
evaluate outcomes
systematically from
different ideas and
solutions.

show limited application
of previous learning to
new problems;
demonstrate a limited
systematic approach to
solving problems.

Appropriate
use of
computing
technologies

consistently display
curiosity and
perseverance to
investigate and analyse a
spectrum of appropriate
automated solutions;
demonstrate an ability to
apply heuristics and
workarounds.

investigate a narrow
spectrum of alternative
automated solutions;
display a tendency to
stick with a solution, with
limited application of
heuristics or workarounds

do not deviate from an
original plan to use a
particular automated
solution;
display minimal evidence
of workarounds when
faced with problems.

Awareness of
potential
societal
impacts

celebrate ambiguity and
having different
interpretations and as
creators of artefacts,
show a sensitivity to
ethical, adaptive and
assistive considerations,
where appropriate;
are aware of the
potential social impact of
automation in areas
aligned to the brief.

show an ability to
tolerate ambiguity and as
creators of artefacts,
demonstrate limited
understanding around
the ethical, adaptive and
assistive implications of
automation, where
appropriate;
are somewhat aware of
the potential social
impact of automation in
areas aligned to the brief.

have difficulty accepting
ambiguity in situations;
show little or no evidence
of ethical, adaptive and
assistive considerations in
their artefacts;
are largely unaware of
the potential social
impact of automation in
areas aligned to the brief.

28

Final examination

The final examination component will be comprised of computer-based practical examination

and a written examination. It will consist of a range of question types. The senior cycle key

competencies, developed through the study of Leaving Certificate Computer Science, are

embedded in the learning outcomes and will be assessed in the context of the learning

outcomes. The final examination component will include a selection of questions that will

assess, appropriate to each level, the learning described in the three strands of study.

Reasonable accommodations

This Leaving Certificate Computer Science specification requires that students engage with

the nature of the subject on an ongoing basis throughout the course. The assessment for

certification in Leaving Certificate Computer Science involves a written and computer-based

practical examination worth 60% of the available marks and an additional component worth

40%. In this context, the scheme of Reasonable Accommodations, operated by the SEC, is

designed to assist students who would have difficulty in accessing the examination or

communicating what they know to an examiner because of a physical, visual, sensory,

hearing, or learning difficulty. The scheme assists such students to demonstrate what they

know and can do, without compromising the integrity of the assessment. The focus of the

scheme is on removing barriers to access, while retaining the need to assess the same

underlying knowledge, skills, values, and dispositions as are assessed for all other students

and to apply the same standards of achievement as apply to all other students. The

Commission makes every effort when implementing this scheme to accommodate individual

assessment needs through these accommodations.

More detailed information about the scheme of Reasonable Accommodations in the

Certificate Examinations, including the accommodations available and the circumstances in

which they may apply, is available from the SEC’s Reasonable Accommodations Section.

Before deciding to study Leaving Certificate Computer Science, students, in consultation with

their school and parents/guardians, should review the learning outcomes of this specification

and the details of the assessment arrangements. They should carefully consider whether or

not they can achieve the learning outcomes, or whether they may have a special educational

need that may prevent them from demonstrating their achievement of the outcomes, even

after reasonable accommodations have been applied. It is essential that if a school believes

that a student may not be in a position to engage fully with the assessment for certification

arrangements, they contact the SEC.

29

Leaving Certificate grading

Leaving Certificate Computer Science will be graded using an 8-point grading scale. The

highest grade is a Grade 1; the lowest grade is a Grade 8. The highest seven grades (1-7)

divide the marks range 100% to 30% into seven equal grade bands 10% wide, with a grade 8

being awarded for percentage marks of less than 30%. The grades at Higher level and

Ordinary level are distinguished by prefixing the grade with H or O respectively, giving H1-

H8 at Higher level, and O1-O8 at Ordinary level.

Table 5: Leaving Certificate Grading

Grade % marks

H1/O1 90-100

H2/O2 80<90

H3/O3 70<80

H4/O4 60<70

H5/O5 50<60

H6/O6 40<50

H7/O7 30<40

H8/O8 <30

30

Appendix 1 Glossary of action verbs
This glossary is designed to clarify the learning outcomes. Each action verb is described in

terms of what the learner should be able to do once they have achieved the learning

outcome. This glossary will be aligned with the command words used in the assessment.

 Action verb Students should be able to
Analyse study or examine something in detail, break down in order to bring out

the essential elements or structure; identify parts and relationships, and
to interpret information to reach conclusions

Collaborate work jointly with another or others

Compare give an account of the similarities and/or differences between two (or
more) items or situations, referring to both (or all) of them throughout

Consider describe patterns in data; use knowledge and understanding to interpret
patterns, make predictions and check reliability

Create bring something into existence; to cause something to happen as a
result of one’s actions

Describe develop a detailed picture or image of, for example a structure or a
process, using words or diagrams where appropriate; produce a plan,
simulation or model

Discuss offer a considered, balanced review that includes a range of arguments,
factors or hypotheses; opinions or conclusions should be presented
clearly and supported by appropriate evidence

Evaluate (data) collect and examine data to make judgments and appraisals; describe
how evidence supports or does not support a conclusion in an inquiry or
investigation; identify the limitations of data in conclusions; make
judgments about the ideas, solutions or methods

Evaluate (ethical
judgement)

collect and examine evidence to make judgments and appraisals; describe
how evidence supports or does not support a judgement; identify the
limitations of evidence in conclusions and make judgments about ideas,
solutions or methods

Explain give a detailed account including reasons or causes

Examine consider an argument or concept in a way that uncovers the assumptions
and interrelationships of the issue

Identify recognise patterns, facts, or details; provide an answer from a number of
possibilities; recognise and state briefly a distinguishing fact or feature

Illustrate use examples to describe something

Investigate observe, study, or make a detailed and systematic examination, in order
to establish facts and reach new conclusions

Interpret use knowledge and understanding to recognise trends and draw
conclusions from given information

List provide a number of points, with no elaboration

Outline give the main points; restrict to essentials

31

 Action verb Students should be able to
Recognise identify facts, characteristics or concepts that are critical

(relevant/appropriate) to the understanding of a situation, event, process
or phenomenon

Reflect give thoughtful consideration to actions, experiences, values and
learning in order to gain new insights and make meaning

Solve find an answer through reasoning

Suggest propose a solution, hypothesis or other possible answer

Synthesise combine different ideas to create new or enhanced understanding

Understand have and apply a well-organised body of knowledge

Use apply knowledge or rules to put theory into practice

Appendix 2 Glossary of core concepts

 Core concept Meaning

Algorithm An algorithm is a sequence of steps designed to accomplish a specific
task. Algorithms are translated into programs, or code, to provide
instructions for computing devices. The words programming, coding and
programming language are understood as follows:

• Programming is the craft of analysing problems and designing,
writing, testing and maintaining programs to solve them

• Coding is the act of writing computer programs in a programming
language

• A programming language is the formal language used to give a
computer instruction.

Computer systems Computer systems consists of hardware, software, computational
processes, networks and users.

Computer modelling Using computing technologies to represent an idea, structure, process or
system, and using models to test scenarios, explain, make predictions and
run simulations, recognising that all models have limitations.

Data Data is a collection of any information that can be processed or analysed
by a computer. Data can be collected with both computational and non-
computational tools and processes.

Machine learning A subset of AI that includes the use of algorithms and mathematical
techniques that enable machines to improve at tasks from experience.

Software evaluation Software evaluation is the process of determining if the program or
combination of programs is the best possible solution to a given problem
or task. The evaluation process should include factors such as feasibility,
efficiency, and ethical use.

Software testing Software testing is the process of finding and correcting errors (bugs) in a
program or system and ensuring that the program produces the intended
output. Debugging includes identifying errors, gaps, and missing

32

 Core concept Meaning

requirements.

Appendix 3 Abbreviations

Abbreviation What it stands for

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

CSS Cascading Style Sheet

DBMS Database Management System

GUI Graphical User Interface

HTML HyperText Markup Language

HTTPS HyperText Transfer Protocol Secure

IO Input Output

IP Internet Protocol

ML Machine Learning

PC Personal Computer

RSA algorithm Rivest Shamir Adleman algorithm

TCP Transmission Control Protocol

www World Wide Web

