
Review of Literature on Computational Thinking

@AttyMassNS, March 2018:
“At the recent [CESI] Conference, we mentioned our plans to
explore decomposition and patterns/generalisations
through Damhsa/Irish dancing. Integrates with/comhthathú
le Seachtain na Gaeilge”

Authored by Dr Richard Millwood, Nina Bresnihan, Dermot Walsh and Joy Hooper

With advice from Glenn Strong and Dr Stephen Powell

June 2018

Review of Literature on Computational Thinking Millwood et al

2

Review of Literature on Computational Thinking Millwood et al

3

Table of contents

Executive summary .. 4

1. How do we define Computational Thinking? .. 6
1.1 A clear definition that is readily understood .. 8
1.2 Justification and rationale .. 8

1.2.1 Introduction ... 8
1.2.2. Why Computational Thinking? ... 9
1.2.3 The rationale for Computational Thinking at primary level11
1.2.4 Challenges with Computational Thinking......................................13
1.2.5 Conclusion ...14

2. What are the key teachable aspects? ..15
2.1 Examples of concepts and skills ..15

2.1.2 The Scottish 3-15 Curriculum ...17
2.1.3 Our approach ...17

2.2 Progression...19
2.2.1 Practical and meaningful projects ..19
2.2.2 ‘Unplugged’ and ‘plugged’ ...20
2.2.3 Why computing is important ..22

3. Computational Thinking in the primary curriculum24
3.1 Integration ...24

3.1.1 Embedding for transfer ..24
3.1.2 Examples where it can be included ..24

4. How do we develop teachers' knowledge-base?27
4.1 What competence is needed?...27

4.1.1 Pedagogical and content knowledge ..27
4.1.2 Building on existing knowledge ..28

4.2 What alternatives are there? ..28
4.3 How can this be sustainable? ..30

Conclusion ...32

References ...33

Appendix 1: The development of the report ...38

Review of Literature on Computational Thinking Millwood et al

4

Executive summary
Computational Thinking (CT) is emerging as a key competence across all disciplines, professions and

throughout society. It can be defined as combining problem solving and design to create useful

solutions, informed by the possibilities that Computing offers.

Where computers are used to formulate solutions, additional independent learning is possible (in

subject content and Computational Thinking) as the computer itself provides a rich context for

enhancement of expressive creativity and evaluative power of learners’ ideas. Collaboration around a

computer makes learning meaningful and supportive. In this sense, Computational Thinking is both

delightful and effective for learners.

Appropriate competence in Computational Thinking at primary level provides an important

foundation for the development of the whole child - their immediate fulfilment, ongoing

empowerment and preparation for later life. In other subjects, Computational Thinking will support

inquiry-based learning at every level and include wider civic and leisure interests. Furthermore,

awareness of the potential of information systems and computer algorithms will help learners tackle

with insight the personal, societal and value challenges as they grow.

Computational Thinking can be introduced and developed in all subjects, and indeed is already present

in Primary teaching practice, and so embedding Computational Thinking is also about recognition of

existing practices, not simply innovation. Evidence suggest that teaching programming in isolation

does not lead to transfer. Therefore using Computational Thinking to support learning challenges

across the curriculum should be the starting point, in order to embed it as a transferable competence.

Computational Thinking depends on acquiring crafts of user-centred design, data analysis and

programming through developing skills in practice (hands). Essential character development includes

dispositions of empathy, inquiry, imagination, perseverance and concern for quality (heart).

Knowledge required includes the way in which information systems and computer technology work,

are programmed and may be debugged through facts, mental models and strategies (head). Designing

data structures and algorithms to create programs through coding is both vital and helpful: attainable

by Primary learners aided by sophisticated but easy to begin programming languages and tools which

support their developing capacity for self-directed learning. These languages and tools can be revisited

with increasing levels of sophistication as the learner grows.

Developing teachers’ teaching of Computational Thinking will include developing their own content

knowledge and their pedagogical knowledge. The sensible way to approach this is to build on teachers’

existing know-how, which so far they may not have recognised as Computational Thinking, and to

Review of Literature on Computational Thinking Millwood et al

5

adopt creative and problem solving practices from other subjects when engaging in Computational

Thinking learning activities.

Approaches to Continuing Professional Development should be diverse and adapted to fit different

teachers’ experience, preference and life circumstances. Online collaborative approaches designed to

fit within the Irish Cosán and Digital Strategy frameworks would be particularly appropriate for rurally

isolated teachers. Exploitation of national conferences, regional Teachmeets and existing

Communities of Practice will ensure sustainability alongside more traditional approaches. But to be

successful, it is crucial to consider the continuity and progression of each teacher’s competence

alongside the whole-school approach being taken. To this end it is recommended that school self-

audit is combined with individual teacher audit to identify strengths and weaknesses and thus guide

both strategic and personal planning.

Review of Literature on Computational Thinking Millwood et al

6

1. How do we define Computational Thinking?
Computational Thinking is a term that has emerged widely in the last decade. Although first used in

1980 by Seymour Papert1 it is only in the last decade that the term Computational Thinking has gained

traction. But its proponents are plagued by uncertainty about the concept, which “has been criticized

for vagueness, ambiguous definitions and visions of Computational Thinking, and arrogance, as well

as for bold, unsubstantiated claims about the universal benefit of Computational Thinking” (Tedre and

Denning, 2016, p.120).

It is not to be confused with Computing or Computer Science, a discipline specific to the computer

itself with its capacities, methods and theory. Computational Thinking can be observed in all

disciplines, notably in Art where, for example, the development of ‘Alphabet Plastique’ techniques by

Herbin and Vasarely in the middle of the 20th Century. These artists recognised the importance of the

computer and automation and developed creative methods for their assistants to generate works of

art based on rules and patterns. Computational Thinking has become vital in all disciplines and the

vast majority of vocations, and can be argued to be important to leisure, sport and civic society. Hence

it is important to build Computational Thinking approaches naturally into all areas of the curriculum

rather than to narrow its focus on ‘coding’ or programming.

To establish a clear definition, this review starts by asking, “what is it that we expect of learners as an

outcome of….” and argues that the answer is a holistic one of rounded competence that is learner-

centred: both their ability to be effective and their fulfilment through the act of learning. We lean on

Priestley’s argument for:

“focus on developing the capacity of young people to act within the world, and characterised

by more dialogical and collaborative pedagogies, continuous approaches to assessment and

higher degrees of teacher agency as they act as curriculum developers.”

(Priestley 2016, p.5)

But being effective and fulfilled does not simply relate to those aspects that are usually cited as

learning outcomes, which are the teacher’s goal with respect to the learner. The most popular

framework for learning outcomes, Bloom’s taxonomy as revised by Anderson, L. W. et al. (2000), is

written to help in developing planning and questioning for the teacher.

1 Papert worked with Solomon and Feurzig to invent the popular programming language Logo in 1967,
which inspired the current popular programming language and online community of learners found in
Scratch.

Review of Literature on Computational Thinking Millwood et al

7

A weakness of this kind of framework is the way it misses out dispositional development, such as

‘perseverance’, ‘openness’ or ‘concern for quality’ all of which are vital in developing solutions through

Computational Thinking.

Thus Bloom’s disconnects rather than combines aspects of learning, by organising them in levels which

are not clearly related to learning progression, but this is how it is often interpreted by teachers. Critics

have observed that teachers do not use its depth effectively nor are they aware of its weaknesses. A

more practice-friendly framework, remembered through the simple metaphor of ‘head, hands and

heart’, representing knowledge, craft and character (Millwood 2018), may be better suited to define

learning outcomes for lesson planning.

Fig 1.2 Competence = knowledge + craft + character (Millwood 2018)

In this analysis, the overall learning outcome is that the learner is competent - effective in using their

capacities to achieve. Such competence is a holistic combination of knowledge, craft and character.

For example, to produce a story about the scientific phenomenon of a butterfly’s life-cycle, one might

be involved in collaborating with others, explaining it through making a poster.

Review of Literature on Computational Thinking Millwood et al

8

Each of these: collaborating, explaining and making, are combined seamlessly in life and interact as

the work proceeds, not necessarily in this order:

● To explain the story one must learn the facts of the butterfly’s life-cycle and construct a

mental model of how transformation from egg to butterfly takes place in dynamic sequence

(head).

● To make the poster, one must learn skills through practice using tools and media (hands).

● To collaborate one must master emotions and manage attitudes towards others (heart).

1.1 A clear definition that is readily understood

Computational Thinking can be defined as competence in problem solving & design to create useful

solutions, informed by the possibilities that Computing offers.

1.2 Justification and rationale

1.2.1 Introduction

The teaching of computing in schools can be broadly justified under 3 categories:

1. The development of Computational Thinking;

2. The development of more broadly applicable skills such as digital literacy, broadened social

participation and 21st century skills and

3. Preparation for participation in the technology sector.

This introduction explains each of these, then focusses on 1. The development of Computational

Thinking.

1. The development of Computational Thinking

The Digital Strategy for Schools 2015-2020 Action Plan 2017 proposes a number of curriculum reforms

including an investigation of the role of coding as part of the primary school maths curriculum. This is

a narrow focus and although coding (programming) is a vital craft that supports competence in

Computational Thinking, it is by no means clear that it is best thought of as a mathematical topic.

Mathematical concepts are clearly linked, but Computational Thinking defined as the problem solving

Review of Literature on Computational Thinking Millwood et al

9

& design to create useful solutions demands a much broader, creative and playful approach engaging

children’s imagination.

2. The development of more broadly applicable skills

The Action Plan also recognises the need to embed ICT in other emerging curriculum developments.

During the launch of the plan Minister Bruton spoke of, "the potential of digital technologies to

enhance teaching, learning and assessment to help students become engaged thinkers, active

learners, knowledge constructors and global citizens". This statement very much aligns to a concept

of Computational Thinking that argues, not just that understanding how our digital world works is a

critical 21st century skill, but also that Computational Thinking can actually be applied to many non-

digital spheres and has the potential to support the development of knowledge, craft and character

development required for creative thinking and problem-solving.

3. Participation in the technology sector

The global economic demand for Information Communication Technology (ICT) skills has been a key

driver for the introduction of Computing in schools. Major reports in the UK (Livingstone & Hope,

2011) and US (Wilson et al., 2010) highlighted the danger to advanced economies of the lack of clear

education policies centred around the subject of Computing, leading to a flurry of interest on both

sides of the Atlantic around its teaching.

Ireland's current ICT Skills Action Plan identified a shortage of up to 864,000 ICT professionals across

the European Union (EU) and the European Economic Area (EEA) by 2015 (Department of Jobs,

Enterprise and Innovation, 2014, p.4] with 44,500 job openings forecast to arise in Ireland over the

period to 2018. If second level computing is to be successful in preparing for such jobs, then the

foundations must be laid in Primary to build both competence and inclination.

1.2.2. Why Computational Thinking?

Jeanette Wing’s 2006 call for Computational Thinking to be added “to every child’s analytical thinking”

sparked a resurgence of interest in the notion that the kinds of problem solving used by computer

scientists could have broader applications. Indeed, if we look to who many consider to be the father

of the field, Seymour Papert (1980), we see an even broader argument for its importance: that “certain

uses of very powerful computational technology and computational ideas can provide children with

new possibilities for learning, thinking, and growing emotionally as well as cognitively.” (Papert, 1980,

Review of Literature on Computational Thinking Millwood et al

10

p17-18). This is a powerful idea; the accompanying Programmes of Study to the English Computing

Curriculum place Computational Thinking at its core with the opening claim that “A high-quality

Computing education equips pupils to use Computational Thinking and creativity to understand and

change the world.” (Department for Education, 2014).

This claim for Computing as a source for Computational Thinking is reinforced more recently by the

Royal Society’s report of developments in the UK countries:

“The broad subject of computing – covering the three vital areas of computer science, digital

literacy and information technology (IT) – has become mandatory in English schools from

ages 5 to 16. In Scotland, we have seen the implementation of the Significant Aspects of

Learning, a framework where computing is broken down into distinct areas of knowledge. In

Wales, the Digital Competence Framework is bringing computing in schools to the forefront,

while Northern Ireland has continued to deliver a comprehensive computing framework.”

(The Royal Society, 2107)

However, translating these aspirations into practical models for the content, delivery and assessment

of Computational Thinking has proven to be challenging for educators. Much work has been done in

an effort to resolve this in recent years, one outcome of which has been the pragmatic adoption of

‘working definitions’. For example in the US, Barr and Stephenson (2011, p112) reported on

“developing an operational definition of Computational Thinking for K-12”, which would take into

account the practical difficulties of bringing Computational Thinking into classrooms from

kindergarten through to year 12 (Senior Cycle in Ireland). Indeed, the “definition”, which was

developed by the US Computer Science Teachers Association and International Society for Technology

in Education, can give a clear idea of the kind of learning outcomes that proponents of Computational

Thinking in the classroom envisage:

“Computational thinking is a problem-solving process that includes (but is not limited to) the

following characteristics:

• Formulating problems in a way that enables us to use a computer and other tools to

help solve them

• Logically organizing and analysing data

• Representing data through abstractions such as models and simulations

• Automating solutions through algorithmic thinking (a series of ordered steps)

• Identifying, analysing, and implementing possible solutions with the goal of achieving

the most efficient and effective combination of steps and resources

Review of Literature on Computational Thinking Millwood et al

11

• Generalizing and transferring this problem solving process to a wide variety of

problems.

These skills are supported and enhanced by a number of dispositions or attitudes that are

essential dimensions of Computational Thinking. These dispositions or attitudes include:

• Confidence in dealing with complexity

• Persistence in working with difficult problems

• Tolerance for ambiguity

• The ability to deal with open ended problems

• The ability to communicate and work with others to achieve a common goal or solution”

CSTA (2011)

If it is possible to develop these competencies through the teaching and learning of Computational

Thinking, this has obvious immediate benefits for children as well as laying a strong foundation for

further development of both Computing and the broader key skills already identified as part of the

second-level cycles where working with digital technology is an explicit part ; see Key Skills of the

Junior Cycle, NCCA (2012).

1.2.3 The rationale for Computational Thinking at primary level

Most research in the development of Computational Thinking has been conducted with learners at

second and third levels of education rather than primary. Indeed there are some (Waite, 2018) that

argue that Computational Thinking requires dealing with levels of abstraction that are simply not

compatible with the cognitive development of primary age children. These arguments generally rely

on Piaget’s early work (Piaget, 1953) which argues that it is only when children reach the ‘formal

operational’ level of development, around the age of 12, that they gain the ability to think in an

abstract manner. This assertion has been challenged, by Piaget himself in his later work but also, in

this domain by Syslo & Kwiatkowska (2014) who argue that paying attention to progression by

introducing concrete objects and examples before moving on to more abstract Computational

Thinking about these objects and concepts may be effective. Gibson (2012) uses a similar approach,

teaching abstract ideas to younger children through the use of concrete games and puzzles. Gibson

reports inviting children to draw simple diagrams with circles and lines according to spoken rules and

then to critically reflect on the attributes of these diagrams, leading to heated argument and

sophisticated reasoning.

Review of Literature on Computational Thinking Millwood et al

12

It can also be argued that computers make abstractions concrete as can be seen in the way that

program code can be created in the Scratch programming language by simply dragging jigsaw pieces

and locking them together in sequence. This makes it necessary to review the assertions regarding

abstraction.

If we accept that it is possible to introduce Computational Thinking at primary school level, then the

next question needs to be whether it is desirable to do so. There are a number of pragmatic reasons

to start at this level which include:

1. cross-curricular approaches - Computational Thinking provides an opportunity for primary

school teachers who teach a class across all subjects which is not available to second-level or

third level educators. This is important, because research shows that transfer of

Computational Thinking to learning in other subjects is not seen when taught as a separate

topic, so beginning within other subjects can assure that it is effective in this sense.

2. addressing issues of gender - targeting girls at a younger age is found to be effective at

increasing their participation in applying Computational Thinking in learning (Lapan, et al.,

2000, Turner, et al., 2008, Graham and Latulipe, 2003)

3. motivation, confidence, delight - While Wing’s early definition of Computational Thinking

involved thinking “like a computer scientist”, ideas of Computational Thinking have been

broadened, and by introducing meaningful projects, character dispositions can be developed.

Designing solutions with Computational Thinking, particularly if implemented with

technology, can have value in providing fulfilment in learning itself, providing the delight of

‘zest’ through free choices and effective outcomes. Such zest is normally fostered through

play, where children are meaningfully responsible for choices and outcomes, even when

founded in imagination and fantasy. (Millwood, 2008)

4. collaboration - Computational Thinking projects lend themselves well to teamwork and

indeed the competence particularly demands the capacity to consult, work and learn with

others. This also has the capacity to lean on play and in particular the delight of ‘conviviality’

(Millwood, 2008).

5. creativity - Computational Thinking is best developed through creative project work, where

the solutions designed use computing technology. Combining the arts, sciences and

technology is currently considered to be highly desirable, permitting dynamic and interactive

outcomes through making. New technologies, such as the BBC Micro:bit have made such

creative projects well within the reach of a playful primary child.

Review of Literature on Computational Thinking Millwood et al

13

1.2.4 Challenges with Computational Thinking

Significant challenges with transfer, progression, pedagogy and teacher readiness have been

identified:

1. Transfer - The idea of Computational Thinking is to integrate computational techniques and

approaches into all disciplines requiring problem-solving skills. Programming is an essential

craft to practice to fully develop Computational Thinking, and has had many claims made

about its effect on wider thinking and thus ‘transfer’ to other subjects. Feurzig, one of the

authors of the programming language Logo, believed that among other things, learning to

program:

a) promoted rigorous thinking and expression through its need for statement precision;

b) gave insights into key concepts such as variables and functions as it made them less

abstract;

c) provided concrete models for heuristic2 thinking by, for examples, demonstrating the

benefits of debugging as a learning process;

d) demonstrated the possibilities of extending a problem to a larger domain or

‘generalisation’;

e) exposed the importance of process in the area of problem-solving, and

f) encouraged an experimental approach.

(Feurzeig et al., 1969)

However, as early as 1984 researchers were concerned about a lack of evidence for such claims.

Studies found more social and motivational merit in learning to program rather than effects on wider

cognitive development. Unfortunately, interest in this research area waned in the 1990s and had

flattened out almost completely by the early 2000s. The result of this has been that the resurgence of

interest in the benefits of teaching Computational Thinking has been stymied by the lack of evidence-

based research to provide guidance.

2 A practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals -

heuristic thinking relies on craft - rules of thumb, trial and error, estimates.

Review of Literature on Computational Thinking Millwood et al

14

1. Continuity, progression and pedagogy - Similar problems surround the identification of what

should be learnt when and in what order regarding Computational Thinking. This is in spite of

there being found considerable consistency in the curriculum defined in international

jurisdictions. Such consistency might demonstrate agreement, but is not necessarily evidence

based. There is a lack of clear evidence to guide the best way to introduce Computational

Thinking. In discussions with experts from the UK, it is clear that the simple ideas presented

in ‘unplugged’3 activities are rarely followed up with meaningful connection to work at the

computer when teaching programming (Waite, 2018). There is a real danger that

Computational Thinking becomes a label for a set of enjoyable time-filling activities with little

coherence and a lack of continuity and progression.

2. Teacher readiness and research evidence - These problems are compounded and sustained

by a lack of readiness on the part of Primary teachers and the barriers in place to uptake of

research evidence to inform practice. Primary teachers in Ireland are rarely qualified in

Computer Science, since this is not a Teaching Council subject discipline, and in any case there

are other more valuable careers on offer to those who have Computer Science. The barriers

to uptake of research evidence range from teachers’ personal beliefs, experiences and

instincts to the external pressures of inspection, observation and tradition.

1.2.5 Conclusion

Despite these problems we would argue that we have a responsibility to equip children and teachers

alike with competence in Computational Thinking, in view of the pervasiveness of technology in their

lives. Children and teachers are no longer being first introduced to technology at school: it is more

likely discovered and is widely used at home and leisure. Thus there is a need to ensure that children

and teachers can become discerning users, as well as encouraging some to be future designers and

developers of technology. For teachers to be role models for children, Computational Thinking needs

to become part of their identity and practice, not simply some material to be taught, as might be

observed with music teachers.

3 Unplugged activities are those designed to investigate Computational Thinking without using

technology, but instead using the more traditional paper & pencil or even human bodies and

classroom environment.

Review of Literature on Computational Thinking Millwood et al

15

2. What are the key teachable aspects?
2.1 Examples of concepts and skills

In order to fully explore the purpose of computational thinking and how it might be embedded in a

Primary curriculum, it’s important to clarify the constituent parts: the key concepts, skills and

dispositions which are involved in Computational Thinking. An analysis of the English Barefoot

Computing curriculum, the Scottish approach and a breakdown of the author’s is presented here.

2.1.1 The Barefoot Computing curriculum

The most relevant analysis here is that to be found in Barefoot Computing, the English primary phase

resource developed by the UK’s Computing at School. This section breaks the Barefoot structure down

further using the lens of knowledge, craft and character as described in section 1 (above). Loosely,

‘concepts’ maps onto ‘knowledge’ and ‘skills’ onto ‘craft’, but also added here is ‘character’ the

dispositional aspects that lead to successful Computational Thinking. Barefoot define six ‘concepts’

and five ‘approaches to working’, which are analysed in tables 2.1 and 2.2 in terms of knowledge, craft

and character:

Table 2.1 Analysis of Barefoot Computing ‘concepts’

Six Barefoot
‘concepts’

Knowledge
facts, mental-models & strategies

Craft
skills through
practice

Character
emotions,
attitudes, values

Logic - predicting &
analysing

Mental-models of problem,
programming language and
notional machine4, strategies of
predicting, explaining and
reasoning (analysing seems to be a
misnomer for this)

Evaluating for
correctness

Imagining
consequences,
caring about
precision

Algorithms - making
steps & rules

Mental-models of programming
language and notional machine,
strategies of decomposition and
sequencing

Creating
algorithms

Imagining
consequences,
persevering to
correct errors

4 The term ‘notional machine’ refers to the child’s imagination of how a mechanism works. It is used, tacitly
in most cases, to form explanations of how a mechanism has worked and predictions of what it might do
in future circumstances. For example, when children play with the BeeBot (a programmable toy robot),
they will imagine a ‘notional machine’ in the meaning of the steps they program, how they are stored and
then executed when they press the ‘Go’ button.

Review of Literature on Computational Thinking Millwood et al

16

Decomposition -
breaking down into
parts

Strategies of identifying parts and
relationships

Organising
information,
creating
representations of
systems in
diagrams

Imagining
categorisations
and causal &
dynamic effects,
persevering to
revise, caring
about precision

Patterns - spotting &
using similarities

Facts of attributes, strategies of
categorisation

Organising
information

Abstraction -
removing unnecessary
detail

This seems unconvincing, both in Barefoot’s presentation and in Wing’s
which Barefoot depends on. Abstraction could be argued to be more
positively about generalisation & representation e.g. using variables for
sets of numbers

Evaluation - making
judgement

Strategies to identify efficiency,
correctness, applicability

Evaluating Caring about
quality

Table 2.2 Analysis of Barefoot Computing ‘approaches’

Five Barefoot
‘approaches’

Knowledge
facts, mental-models & strategies

Craft
skills through
practice

Character
emotions,
attitudes, values

Tinkering - trying
things out

Strategies for reasoning, creating
and evaluating alternatives,
mental-models of criteria e.g.
effectiveness

Creating systems
and playing with
‘variables’

Imagining
alternatives,
persevering with
choices

Creating - planning,
making and evaluating
things

Facts and mental-models about
microworlds, problems, tools and
languages

Creating designs,
making artefacts,
evaluating them

Imagining
possibilities,
caring about
quality

Debugging - finding
and fixing ‘bugs’

Strategies for reasoning, mental-
models of programming language
and notional machine

Creating tests,
evaluating
program outputs
and statements

Persevering - never
giving up, being
determined, resilient
and tenacious

 Persevering

Collaborating -
working with others to
ensure the best result

 Collaborating

Review of Literature on Computational Thinking Millwood et al

17

2.1.2 The Scottish 3-15 Curriculum

In Scotland, the new 3-15 curriculum for Computer Science makes for greater focus on machines and

languages: “Efforts to make Computer Science entirely about ‘computational thinking’, in the absence

of ‘computers’, are mistaken, in our opinion.” (Cutts, Connor and Robertson, 2017). Nevertheless, the

advice is to follow three ‘Significant Aspects of Learning’ (SALs) in sequence, but in a spiral curriculum

sense (Farrell et al., 2017).

The three SALs are:

1. understanding the world through computational thinking - Theory: Understanding the world

through computational thinking and knowledge of core Computing science concepts is

necessary in order to later apply that knowledge using languages and technology

2. understanding and analysing computing technology - Languages and Tools: Understanding

of Computing technology and the programming languages that control them is essential

before designing and building using these tools

3. designing, building and testing computing solutions - Creating: Use conceptual and

technological knowledge to design, build and test.

The third SAL is where actual programming takes place, having explored theoretical meanings in SALs

one and two first. This follows a traditional model of learning, which perhaps does not sit so well

alongside a modern constructivist/constructionist paradigm.

2.1.3 Our approach

In this section the bigger picture of Computational Thinking is described and its relationship with the

subject of Computer Science. Computer Science is not directly relevant to Primary children. It is

concerned with the study of the theory, methods and effectiveness of computer systems and their

applications. Computational Thinking is more concerned with overarching conceptualisation. For

example, in Computer Science learners would investigate and prove the relative efficiency of

alternative algorithms to sort lists of information, whereas competence in Computational Thinking

would demand an awareness of this possibility, and apply that awareness in the design of a solution

which needed to sort data to achieve a meaningful goal. Figure 2.1 lists some of the elements of

knowledge (areas of conceptual knowledge in the form of facts, mental models and strategies) that

inform Computational Thinking as a whole. These elements of knowledge will be only be understood

fully through a child’s learning journey from pre-school to third level and beyond, in the sense of a

Review of Literature on Computational Thinking Millwood et al

18

spiral curriculum (Bruner, 1977). Nevertheless, some content can be addressed in simple and

introductory ways at Primary level.

So this paper does not propose that all of Fig 2.1 below is to be tackled in the Primary phase, but that

curriculum development should use it as guide to distinguishing Computational Thinking and

Computer Science and for considering relevant ideas to be taught at a foundational, creative and

playful level. Furthermore, the diagram in 2.1 does not relate to craft and character, and so demands

further analysis to clarify what aspects of each topic should be expected to be practised, what

character dispositions should be developed and what is to be known at the end of Primary phase.

Fig 2.1 - The content of Computational Thinking (Millwood, 2016)

Fig 2.1 indicates how many of these knowledge elements (those in the outer blue rectangle) are more

generic and everyday than Computer Science itself (those in the inner grey rectangle). For example, in

information systems, the ways in which we organise information in filing systems or show in diagrams

on paper is an older topic and conceptually independent of Computer Science. But with the advent of

computational thinking

computer
science

decomposition

coding

control structures

algorithmic thinking

information systems

data, variables,
operators, statements

and functions

algorithms

data structures

recipes, routes,

branching stories,
DIY guides

filing systems, diagrams, indices, bookshelves

ciphers,
labels, TLAs
abbreviations,
binary formal

languages

identify and
characterise parts,
levels and relationships

arrays, trees, lists,
dictionaries

programs

should that be:

problem solving
 + design
 = solutions ?

databases
object-orientation,

subroutines,
functions

=
+

sequence, selection, repetition,

events, parallelism, recursion

Review of Literature on Computational Thinking Millwood et al

19

widespread computing power new possibilities emerge for problem solving and design. An example

from mathematics can be found in the way that with greater number-crunching power, numerical

methods of problem solving by repeated calculations have supplanted methods using algebra.

Another is the way that it is now most effective to develop a chart or graph using a spreadsheet

package rather than drawing with paper and pencil. The has led to the growth of new and dynamic

visualisations of data. Such examples are highly relevant to communicating complex ideas in many

disciplines, but depend on a foundation of knowledge and craft that can begin in Primary level with

understanding the power to communicate with much simpler examples. Paper and pencil methods

are not helpful, since they typically mean simply following procedures - the power of computing allows

a trial-and-error process more suited to problem solving and design, leading to a deeper conceptual

understanding.

2.2 Progression

In this section, the idea of progression is examined through the kinds of activities proposed to develop

Computational Thinking and the role of the computer in learning, taking into account the potential for

playful and bodily experience and the new dimension that working with a computer offers. Broadly, it

is anticipated that a spiral curriculum (Bruner 1977) approach is begun in the Primary stage, moving

from direct concrete play and problem solving to apparently more abstract activity using the computer

to design solutions. The vital insight is that the computer makes the abstract concrete in the sense of

providing responsive, tactile and aesthetically pleasing experiences, thus supporting independent

learning at the same time as being the embodiment of the content to be learnt.

2.2.1 Practical and meaningful projects

Computational Thinking depends on developing crafts of user-centred design5, data analysis and

programming through developing skills in practice (hands). This means children must engage in

practical projects that attempt to create solutions for meaningful problems. Such problems do not

need to be meaningful in the sense of real-world relevance - playful, imaginative and fantastical

contexts can provide them too. For example, at an early stage children can solve play problems related

to shopping or travelling from home to school using a floor map. They may begin by navigating physical

5 ‘user-centred design’ means consciously using empathy and consultation with the anticipated users

of a design. It is consider best practice for developing effective and pleasing design products.

Review of Literature on Computational Thinking Millwood et al

20

space with their own bodies and subsequently by programming toy robots. At a later level embedded

systems can be used to design solutions to robotics problems around the creation of toys and

playthings as seen in the Robot Petting Zoo (TechHive - At the Lawrence Hall of Science, 2018). Robots

here may be a dinosaur that opens its mouth when presented with food - much more than simple

engineering solutions, but toys which are founded in play and fantasy, unleashing the imagination to

create playful artefacts.

2.2.2 ‘Unplugged’ and ‘plugged’

Learners may begin with ‘unplugged’ activities, designing solutions to problems that exercise

algorithms and data structures applied to themselves and their surroundings. A common example is

to invite children to play as robots, speaking or writing instructions for each other to navigate space.

But the link must be made in terms of knowledge and craft as they progress to using technology.

Essential character development includes dispositions of empathy, inquiry, imagination, perseverance

and concern for quality (heart). These can be explicitly addressed through reflection on the way

learners have dealt with the challenges set.

Key strategies of problem solving as described in the Barefoot Computing approach can be developed

over time by remembering to start with modest aims. For example ‘decomposition’ can be to identify

first and second steps in a sequence - “this comes before that”. Progression to longer sequences can

be attempted when this simplest of decompositions has been mastered.

Knowledge required includes the way in which information systems and computer technology work,

are programmed and may be debugged through facts, mental models and strategies (head). Five

essential mental models that must be developed for programming are shown in Fig 2.2.

Review of Literature on Computational Thinking Millwood et al

21

Fig 2.2 Programming: Five areas of mental model

For example, a simple project for children is to animate on a tablet the telling of a Knock-knock joke.

It is important to develop problem comprehension, by inviting children to recall such jokes, select one

and write down the script as a play. If they are then to write a computer program, they must develop

an idea of the program language elements - in Scratch, these are found categorised by colour on the

screen and their ‘grammar’ is discovered through dragging and dropping like jigsaw pieces onto the

screen. Furthermore, they must build a mental model of the notional machine - how the language is

executed in the computer. Scratch helps by highlighting which statement is active as the program is

run. Finally they must also know the features of the microworld or domain on which the program is

acting - with Scratch, this includes the idea of a stage and sprites that can move, interact, play sounds

and change shape.

Ultimately, designing data and algorithms to create programs through coding is an essential skill,

which is attainable by Primary learners aided by sophisticated but easy to begin programming

languages such as ScratchJr, Scratch and Snap. These languages can be revisited with increasing levels

of sophistication as the learner develops.

Review of Literature on Computational Thinking Millwood et al

22

2.2.3 Why computing is important

An important potential strength through working with the computer is that its interface offers an

additional learning cycle of expression and evaluation as described in the expressive constructivist

model (Millwood, 2014) - see Fig 2.3.

Fig 2.3 - The learning model of Expressive Constructivism (Millwood, 2014)

An example from three children exploring a computer game can be found in the script below. In this

example Sasha is expressing his thinking about the way the game works explicitly using natural

language to the others. After several turns through a loop re-expressing on the basis of his own

evaluation by listening to his own words (although seeking the others' evaluation), eventually his

brother evaluates his words.

Patrick - I'll die if I go down there!

Sasha - Like getting damaged. Getting all the way damaged do you mean? Getting damaged.

Sasha - Do you know when you die? You die when you get all damaged, is what it means,

when it all gets red or the green turns into red.

Review of Literature on Computational Thinking Millwood et al

23

Sasha - The red is damage and the green isn't damage. Do you understand?

Sasha - When you get all damaged then you die, is that right Patrick?

Patrick - Yes, yes that's right.

The additional cycle of learning through trying in the game and seeing what happens had

already occurred, as Sasha reports in this conversation:

Sasha - That's right, when you get down there you can just go from there and then straight

down to there without a single damage.

Sasha - And do you know how I know that?

Sasha - Because I tried it several times - that's how I know.

Patrick - That's very good, thanks Sasha!

The independent learning cycle offered by the computer game itself is the powerful important

potential strength proposed above.

Such potential is realised if the computer environment enhances expressivity and at the same time

increases evaluative power, which may also come from the evaluation of peers, teachers or parents

able to share the screen (Millwood, 2012). In programming, a formal expression is written, often using

aesthetically pleasing tools such as Scratch, and the computer helps evaluate their validity by

attempting to execute the expression. The visual results are often informative to the learner,

especially as they develop debugging skills. A record of past expressions can be saved and reviewed

and used as a basis to collaborate with other learners. Furthermore, tools can be used to analyse the

complexity or sophistication of such expressions. Thus much independent learning can take place,

although this can be maximised by working in pairs or small groups and through the facilitation and

expertise of the teacher.

Review of Literature on Computational Thinking Millwood et al

24

3. Computational Thinking in the primary
curriculum
3.1 Integration

3.1.1 Embedding for transfer

Computational Thinking can be introduced and developed in all subjects, and indeed is already present

in Primary practice, and so embedding Computational Thinking is also about recognition, not simply

innovation. As described in section 2, evidence suggests that teaching programming in isolation does

not lead to transfer of competence. Using Computational Thinking to support challenges across the

curriculum should therefore be the starting point, in order to embed it as a transferable competence.

Computational Thinking depends on acquiring crafts of user-centred design, data analysis and

programming through developing skills in practice (hands). Essential character development includes

dispositions of empathy, inquiry, imagination, perseverance and concern for quality (heart).

Knowledge required includes the way in which information systems and computer technology work,

are programmed and may be debugged through facts, mental models and strategies (head). At its

heart, designing data and algorithms to create programs through coding is an essential skill, which is

attainable by children in Primary school aided by sophisticated but easy to begin programming

languages and other tools such as spreadsheets and databases. These tools can be revisited with

increasing levels of sophistication as the learner develops.

3.1.2 Examples where it can be included

The following specific aspects of Computational Thinking from Fig 2.1 above were chosen:

● coding

● decomposition

● algorithmic thinking

● information systems

These aspects were explored against the strands and strand units of the Irish primary curriculum

(NCCA, 2016) and the following examples of using Computational Thinking as an across-curriculum

competency are presented in Table 3.1

Review of Literature on Computational Thinking Millwood et al

25

Table 3.1 Examples of using Computational Thinking across the curriculum.

Computational
Thinking

Competence Precursor Curriculum focus Activity Progression

Algorithmic
Thinking -
understand the
concept of
sequence

Explaining ‘what
do you see when
you go on your
journey home’.

Predicting the
success of a
sequence of
steps to go
home.

Understand
cause and
effect
between two
events

English - 11.
Retelling and
elaborating

Tell and retell stories
and personal and
procedural
narratives of
increasing
complexity to
familiar and
unfamiliar audiences
using appropriate
sequencing, tense
and oral vocabulary.
TF11, C1+2

It’s your
birthday, draw
a map/explain
to your friend
how to get
from the school
to your house
and what
steps/stages in
the journey.

Send your
beebot home:

Draw a map of
your locality
and enter the
commands
necessary for
the beebot to
navigate the
map.

Decomposition,
Alorithmic
Thinking - co-
ordinating events
in correct
sequence

Analysing a
narrative for the
steps in a
sequence, then
formally making
the steps that
will represent its
performance.

Understand
the concept
of a
sequence.

English - as above With a partner
recall a knock
knock joke.

Write a play
script outlining
your knock
knock joke.

Using Scratch
write a set of
commands
between two
characters that
will result in
the telling of a
knock knock
joke.

Coding,
Decomposition -
generalising
structures

Analysing
patterns in
human and
computer
languages,
creating new
expressions

Know the
elements of
language and
their names:
verb, noun,
adjective etc.

Gaeilge - . Sentence
structure and
grammar
Use coherent
sentences of
increasing
complexity with
correct tense, word
order and sentence
structure, while
using connectives
and producing
compound and
complex sentences
to elaborate
appropriately. TF4,
C2

Compare
syntax of Irish
language
(Action,
person/object,
FB, place, time)
with syntax of
Formal Coding
languages.

Write program
to generate
nonsense
sentences, but
correctly
grammatically
structured.

Algorithmic
Thinking -
identifying
patterns

Making by hand,
analysing and
making an
algorithm from
patterns

Know
appropriate
colours, able
to draw
straight lines
and fill in

Art - Paint/ drawing
– Making drawings,
looking and
responding to
drawings.

Follow an
algorithm to
draw an
‘automated’
landscape’

Using Scratch,
engage in a
paired
programming
activity to
research and

Review of Literature on Computational Thinking Millwood et al

26

shapes with
colour

re-create a
famous
painting.

Decomposition-
identfying key
elements and
relationships

Creating and
making an
interactive
narrative

Know the
story of a past
event, its
context and
main actions

History - use
imagination and
evidence to
reconstruct
elements of the past

Research a
historical event
and context
identifying the
actions in
sequence and
the appearance
of key elements

Develop a
narrative using
an interactive
3D
environment to
tell the story

Decomposition -
identfying key
elements and
relationships

Analysing and
explaining a
system

Know concept
of biological
cells and their
lifecycle

Science - Living
things - Human life

Identify and
characterise
the ‘actors’ in
the antibody
reaction to
infection

Create an
antibody
reaction
simulation
using Scratch

Information
systems

Analysing,
explaining and
predicting
information

Understand
measurement
of
temperature,
wind
strength,
direction

Geography -
Investigating and
experimenting •
carry out simple
investigations set by
the teacher, make
observations and
collect data

Record weather
data each day
using a
spreadsheet /
database

Create reports
of weather
using charts,
contrast with
media
predictions

The final column in the table suggests activities that might develop Computational Thinking further

through the use of computing technology and which build on the concepts already tackled in the

curriculum in other subjects, but not labelled as Computational Thinking. It is argued that the greater

depth of understanding through the use of technology will create a foundation for Computational

Thinking through creative and playful activities.

Review of Literature on Computational Thinking Millwood et al

27

4. How do we develop teachers' knowledge-
base?
This section focuses on Continuing Professional Development for teachers in service. Clearly there is

also scope for change in the preparation of teachers in initial teacher education. However, the

conditions are different, with face-to-face predominant and greater opportunity to lay down a

foundation rather than building on existing teachers’ experience.

4.1 What competence is needed?

4.1.1 Pedagogical and content knowledge

Teachers aiming to develop competence teaching Computational Thinking concepts, can benefit from

engaging in reflection on their current practice and to identify existing alignment with Computational

Thinking objectives. The Pedagogical Content Knowledge framework initially proposed by Shulman

(1986) lends itself as an approach that teachers can engage with in order to develop a deeper

understanding of how their current practice aligns with the teaching and learning of Computational

Thinking. Shuman argues that in order for teachers to develop in depth understanding of teaching and

learning they need to obtain expertise in pedagogical knowledge and content knowledge and

furthermore develop an understanding of how and where both pedagogical knowledge and content

knowledge align. The PCK framework and the more recent TPACK framework proposed by (Mishra

and Koehler, 2006) both provide useful frameworks for teachers to explore combinations of

technology knowledge, pedagogy knowledge and content knowledge and how and where they

intersect for in-depth Computational Thinking teaching and learning experiences. In recent studies in

Ireland at secondary level, teachers who participated in a Lesson Study6 team identified deep

relationships between their pedagogy knowledge and their content knowledge and an alignment

between their pedagogy content knowledge during their evaluation of teaching and learning activities

they had co--created and implemented in a formal setting (NCCA, 2016, Ní Shuilleabhain, 2016). The

research suggests that the Lesson Study model provides a valuable methodology for engaging teachers

in activities that aim to raise their awareness of how pedagogy and content knowledge align.

Furthermore, the research suggests that teams of teachers could support one another to develop

6 Lesson Study is an approach to professional development where teachers act in teams to address
lesson planning and reflect collectively on outcomes

Review of Literature on Computational Thinking Millwood et al

28

common practices for Computational Thinking. However, It is important to consider, that

competences are “complex combinations of knowledge, skills, understanding, values and attitudes”

(European Commission, 2013) and, as such, simple knowledge of the alignment between their existing

practices and Computational Thinking may be insufficient contributors to teacher professional growth.

Hence, an over-reliance on teachers only demonstrating knowledge of where and how Computational

Thinking aligns with current practice will repeat many of the mistakes of past reforms.

4.1.2 Building on existing knowledge

In conjunction with a knowledge based approach, a ‘bottom up’ approach where teachers build on

their existing ‘know how’ and their current experiences of teaching and learning can be of benefit to

individuals willing to develop competence in Computational Thinking teaching and learning. It is

argued that teachers’ prior experiences of teaching and learning are significant contributors to the

epistemologies, beliefs and values they bring into the classroom and these experiences afford or

construe the likelihood of teachers’ successes with achieving new reforms. The literature is full of

examples of teachers, who, following professional development, engage in ‘gung ho’ attempts at

implementing reforms before, gradually, retreating to traditional teaching and learning

methodologies when external pressures, including parental expectations, pressures from colleagues

and exam focus conflict with the reforms. If Computational Thinking is to take its place within the

curriculum, then easily accessible resources or activities which enhance the teaching and learning of

current curriculum learning outcomes would be of great benefit for teacher's practice, and where

these resources align with teacher's existing knowledge-base of pedagogy and content knowledge

they will, in theory, be more likely to be used.

4.2 What alternatives are there?

Since the introduction of Computational Thinking may be novel for many teachers, approaches to

Continuing Professional Development should be diverse and adapted to fit different teachers’

experience, preference and life circumstances. Online collaborative approaches designed to fit within

the Irish Cosán and Digital Strategy frameworks would be particularly appropriate to cater for rurally

isolated teachers. Exploitation of national conferences, regional Teachmeets and existing

Communities of Practice will ensure sustainability alongside more traditional approaches.

Accordingly, CPD experiences aimed at successful reform will require approaches tailored specifically

for the needs of the teacher, which can be achieved through elearning initiatives guided by branching

logic for example, or the provision of a diverse range of activities which recognise and cater for

Review of Literature on Computational Thinking Millwood et al

29

professional development episodes which afford teacher professional growth. If we accept that for

the most part, teacher growth is incremental and gradual, while recognising that teachers can

experience gestalt shifts in practice, then it is likely that teachers will be prepared to engage in

different types of CPD during different stages of growth.

Where teachers are novices or newcomers to topics such as Computational Thinking then traditional

instructor directed activities will enable the development of initial knowledge about how and what

Computational Thinking is. These examples may include facilitator driven presentations of what

Computational Thinking is, how it can be integrated and examples of successful strategies which

teachers can take away and use in their own classroom. These could also be supplemented with online

modules where examples are delivered step by step similar to online course providers such as Udemy

and Futurelearn. Where teachers have moved beyond a novice stage and are prepared to experiment

with new teaching and learning strategies then attendance at events including Teachmeets,

conferences or maker meets, for example would enable them to view examples and make connections

with like-minded individuals engaging in professional experimentation with Computational Thinking

initiatives. For those who are in a master stage of development, then joining or leading communities

of practice may align with their stage of professional growth. In these cases, models of CPD which aim

to engage teacher's as participants in professional learning communities will be of value. Existing

models of CPD which align with this stage of development would include Lesson Study, Bridge 21 and

Design Thinking with teachers. Each of these have been seen to be effective at second-level: Lesson

Study in Mathematics, Bridge21 in Computer Science, Design Thinking in Information and

Communications Technology. These models have also been employed in academic courses for Irish

primary teachers such as the MSc Technology and Learning at TCD, and because they go beyond

exposition of knowledge but also foster the development of the teacher’s craft and character by

involving the teacher in systematic professional dialogue, there would be good reason to believe they

would be effective at primary level more generally.

Over time, collaboration between teachers can move from face-to-face meetings to the online

environment. Particularly in rural Ireland, teachers are geographically dispersed inconveniently,

meaning face-to-face meetings can require cumbersome journeys for participants, which may be

interrupted by a range of life events, duties of care or adverse weather conditions. Consequently, the

ultimate goal of CPD aimed as long term sustainable growth should consider the provision of online

environments where teachers can engage in constructive dialogue, lesson prototyping and evaluation

and reflection on professional experimentation with co-created teaching and learning approaches to

Computational Thinking. Here cluster models, such as those currently being proposed by the Digital

Excellence fund initiative will be highly relevant.

Review of Literature on Computational Thinking Millwood et al

30

When this reality can be achieved, then CPD will become both teacher-centred and self-directed.

While it is important to recognise that there is no argument for teachers to pass through stages of

professional growth in a linear fashion, the provision of a range of CPD experiences, such as those

listed above, which can cater for teachers at different stages of professional growth can provide a user

experience which aligns with the four dimensions for teacher learning outlined by the Cosán

framework:

1. Formal and informal

2. Personal and professional

3. Collaborative and individual

4. School based and external.

4.3 How can this be sustainable?

But for sustainability, it is crucial to consider the continuity and progression of the teacher’s

competence alongside the whole-school approach being taken. To this end it is recommended that

school self-audit and planning is combined with individual teacher audit to identify strengths and

weaknesses and guide strategic and personal planning.

Regardless of any CPD initiative, or learning process which is identified, the gatekeeper to any reform

is the teacher them self. Teacher professional growth takes place on two planes, the psychological and

the social and it is important to recognise that any teacher will require a range of both internal and

external supports which will make it worthwhile for them to implement reform. Where internal factors

including beliefs, attitudes, knowledge and skills will contribute to the competence of the teacher, the

social domain must be negotiated in order for reforms to become sustainable. Traditionally, external

resistance to reform comes from a range of factors including parental expectations, school culture and

anxiety surrounding student performance on exam subjects. As it is, initially, unlikely to be able to

prove the impact of Computational Thinking skills learning on students’ performance through

traditional standardised testing approaches to assessment at primary level in particular, success will

have to be communicated to the wider school community through different means. Subsequently, a

balanced strategy where both the individual teacher and the whole-school approaches are in synergy

can contribute to reform initiatives which will be sustainable. Accordingly, the school eco-system will

play a significant role in how successful any reform will be. While the teacher is the gate-keeper to

any reform, as they ultimately afford or construe its implementation, the wider system, including

Review of Literature on Computational Thinking Millwood et al

31

parents, stakeholders, colleagues and students will all play a significant role in how sustainable any

reform initiative is. Computational Thinking initiatives, therefore, can benefit from adopting a whole

school approach, by school we mean the participants listed above, where the beliefs, attitudes,

knowledge and skills of the school community are evaluated before formulating a strategic plan to

achieve reforms. One such model includes, the Educational Positioning System (EPS) (Wenmoth, 2008)

school evaluation process which focuses on the whole school community as a contributor to direction

and vision. The EPS can help teachers and stakeholders to identify their communities needs in order

to plan and measure successful reforms. The EPS examines how the whole school community,

including parents, teachers, staff and stakeholders interact thereby providing an in depth picture of

the socio-cultural environment of the school and what challenges there are likely to be to reforms.

The EPS accomplishes this by measuring school progress against three key dimensions which include

six elements each.

The three key dimensions include:

Philosophical frameworks. Exploring the fundamental nature of educative purpose, learning,

knowing and knowledge.

Community and culture. Addressing the development of a learning culture and learning

community.

Strategies and structures. The tools to implement the philosophical frameworks including

the design of, the use, and allocation of people, time, space and

place.

(Wenmoth, 2008)

The value of this type of approach is that the beliefs attitudes, skills and knowledge of the individual

teachers, the parents, students and staff can be collected, measured and ‘planted in the ground’ as

reference points for evaluating the success of any reform initiative.

Review of Literature on Computational Thinking Millwood et al

32

Conclusion
This report argues that Computational Thinking is the right focus in primary education and can and

should be delivered through activities in every subject. Simpler frameworks can help teachers see the

whole picture to develop competence in children. ‘Unplugged’ approaches are useful, but must be

clearly linked with progression to ‘plugged’ activities. In both cases, playful and meaningful

approaches should be used to maintain interest and zest in pupils. Professional Development

approaches must be creative and collaborative as teachers develop their personal competence as well

as understanding the pedagogical and content knowledge to be taught to children. This can best be

started through linking self-audit and whole-school audit to recognise where Computational Thinking

is already taught.

Review of Literature on Computational Thinking Millwood et al

33

References
Anderson, L. W. et al. (2000) A Taxonomy for Learning, Teaching, and Assessing: A Revision of

Bloom’s Taxonomy of Educational Objectives, Complete Edition. 2Rev Ed edition. New York: Pearson.

Barr, V. and Stephenson, C. (2011) ‘Bringing Computational Thinking to K-12: What is Involved and

What is the Role of the Computer Science Education Community?’, ACM Inroads, 2(1), pp. 48–54.

doi: 10.1145/1929887.1929905.

Bruner, J. S. (1977) The Process of Education. Harvard University Press.

Clarke, D. and Hollingsworth, H. (2002) ‘Elaborating a model of teacher professional growth.’,

Teaching and teacher education, 18(8): 947-967.

Crick, T. (2017) FINAL DRAFT: Computing Education: An Overview of Research in the Field. Royal

Society. Available at: https://royalsociety.org/~/media/policy/projects/Computing-

education/literature-review-overview-research-field.pdf.

Cutts, Q., Robertson, J. and Connor, R. (2017) ‘Keeping the machinery in Computing education’,

Communications of the ACM, 60(11), pp. 26–28. doi: 10.1145/3144174.

CSTA, (2011) Operational Definition of Computational Thinking for K-12 Education, Available at:

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf (accessed:

(Accessed: 1 December 2017).

Department for Education (2014) National curriculum in England: Computing programmes of study,

Publications - GOV.UK. Available at: https://www.gov.uk/government/publications/national-

curriculum-in-england-Computing-programmes-of-study (Accessed: 28 April 2015).

Department of Jobs, Enterprise and Innovation (2014) ICT Skills Action Plan 2014-2018. Available at:

https://www.education.ie/en/Publications/Policy-Reports/ICT-Skills-Action-Plan-2014-2018.pdf

(Accessed: 1 December 2017).

Ertmer, P. A., et al. (2012) ‘Teacher beliefs and technology integration practices: A critical

relationship’, Computers & Education, 59(2): 423-435.

European Commission (2013) ‘Supporting teacher competence development for better learning

outcomes’

Review of Literature on Computational Thinking Millwood et al

34

Farrell, K. et al. (2017) Teach Computing Science - A Guide for Early Years and Primary Practitioners,

p. 70. Available at: http://teachcs.scot/wp-content/uploads/2017/05/TeachCS.pdf (Accessed: 14

February 2018).

Feaster, Y. et al. (2011) ‘Teaching CS unplugged in the high school (with limited success)’, in.

Proceedings of the 16th annual joint conference on Innovation and technology in Computer Science

education, ACM, pp. 248–252.

Gibson, J. P. (2012) ‘Teaching graph algorithms to children of all ages’, in Proceedings of the 17th

ACM annual conference on Innovation & technology in Computer Science education, ACM, pp. 34–

39.

Graham, S. and Latulipe, C. (2003) ‘CS girls rock: sparking interest in Computer Science and

debunking the stereotypes’, in. ACM SIGCSE Bulletin, ACM, pp. 322–326.

Grover, S. and Pea, R. (2017) ‘Computational Thinking: A Competency Whose Time Has Come’.

Available at:

https://www.researchgate.net/profile/Shuchi_Grover/publication/322104135_Computational_Thin

king_A_Competency_Whose_Time_Has_Come/links/5a457813a6fdcce1971a5ce5/Computational-

Thinking-A-Competency-Whose-Time-Has-Come.pdf.

Guskey, T. R. (2002) ‘Does it make a difference? Evaluating professional development’, Educational

Leadership, 59(6): 45.

Guskey, T. R. (2014) ‘Planning professional learning’, Educational Leadership, 71(8): 10.

Lapan, R. T. et al. (2000) ‘Seventh graders’ vocational interest and efficacy expectation patterns’,

Journal of Career Development, 26(3), pp. 215–229.

Livingstone, I. and Hope, A. (2011) Next gen: transforming the UK into the world’s leading talent hub

for the video games and visual effects industries : a review. National Endowment for Science

Technology and the Arts (Great Britain). Available at:

http://www.nesta.org.uk/sites/default/files/next_gen_wv.pdf.

Mannila, L. et al. (2014) ‘Computational Thinking in K-9 Education’, in. Proceedings of the Working

Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference,

ACM, pp. 1–29.

Mano, C., Allan, V. and Cooley, D. (2010) ‘Effective in-class activities for middle school outreach

programs’, in. Frontiers in Education Conference (FIE), 2010 IEEE, IEEE, p. F2E–1.

Review of Literature on Computational Thinking Millwood et al

35

Mayer, R. E., Dyck, J. L. and Vilberg, W. (1986) ‘Learning to program and learning to think: what’s the

connection?’, Communications of the ACM, 29(7), pp. 605–610.

Millwood, R. (2008) ‘An Analysis of Delight’, Richard Millwood, 15 May. Available at:

http://blog.richardmillwood.net/2008/05/15/an-analysis-of-delight/ (Accessed: 11 January 2018).

Millwood, R. (2012) ‘How does technology enhance learning?’, A New Learning Landscape, 30 June.

Available at: http://blog.richardmillwood.net/2012/06/30/how-does-technology-enhance-learning/

(Accessed: 14 February 2018).

Millwood, R. (2014) The Design of Learner-centred, Technology-enhanced Education. University of

Bolton. Available at: http://phd.richardmillwood.net/ (Accessed: 4 May 2016).

Millwood, R. (2016) The content of Computational Thinking. Available at:

http://blog.richardmillwood.net/2016/06/01/computational-thinking-content/ (Accessed: 11

January 2018).

Millwood, R. (2018) ‘Competence = knowledge + craft + character’, Richard Millwood, 11 January.

Available at: http://blog.richardmillwood.net/2018/01/11/competence-knowledge-craft-character/

(Accessed: 11 January 2018).

Mishra, P., M. J. K. (2006) ‘Technological pedagogical content knowledge: A framework for teacher

knowledge’, Teachers college record, 108(6): 1017.

NCCA (2012) Key Skills of the Junior Cycle. National Council for Curriculum and Assessment. Available

at:

http://www.juniorcycle.ie/NCCA_JuniorCycle/media/NCCA/Documents/key_skills_oct_2012_WEB_F

INAL.pdf (Accessed: 8 February 2018).

NCCA (2016) ‘Primary Language Curriculum: English Language 1 and Irish Language 2’. National

Council for Curriculum and Assessment. Available at:

http://curriculumonline.ie/getmedia/524b871d-1e20-461f-a28c-bbca5424112d/Primary-Language-

Curriculum_1.pdf (Accessed: 1 March 2018).

Ní Shuilleabhain, A. N. (2016) ‘Developing mathematics teachers’ pedagogical content knowledge in

lesson study’, International Journal for Lesson and Learning Studies, 5(3):, p. 212–226.

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Pea, R. D. and Kurland, D. M. (1984) ‘On the cognitive effects of learning computer programming’,

New ideas in psychology, 2(2), pp. 137–168.

Review of Literature on Computational Thinking Millwood et al

36

Piaget, J. (1953) The origin of intelligence in the child. New York: Routledge & Kegan Paul.

Priestly, M. (2016) A Perspective on Learning Outcomes in Curriculum And Assessment. Dublin,

Ireland: National Council for Curriculum and Assessment of Ireland, p. 13. Available at:

https://www.ncca.ie/media/2015/a-perspective-on-learning-outcomes-in-curriculum-and-

assessment.pdf (Accessed: 11 January 2018).

Rodriguez, B., Rader, C. and Camp, T. (2016) ‘Using student performance to assess cs unplugged

activities in a classroom environment’, in. Proceedings of the 2016 ACM Conference on Innovation

and Technology in Computer Science Education, ACM, pp. 95–100.

Shulman, L. S. (1986) ‘Those who understand: Knowledge growth in teaching’, Educational

researcher, 15(2): 4-14.

Sysło, M. M. and Kwiatkowska, A. B. (2014) ‘Playing with Computing at a children’s university’, in.

Proceedings of the 9th Workshop in Primary and Secondary Computing Education, ACM, pp. 104–

107.

Taub, R., Ben-Ari, M. and Armoni, M. (2009) ‘The effect of CS unplugged on middle-school students’

views of CS’, ACM SIGCSE Bulletin, 41(3), pp. 99–103.

TechHive (2018) TechHive - At the Lawrence Hall of Science, TechHive - At the Lawrence Hall of

Science. Available at: http://www.techhivestudio.org/ (Accessed: 11 February 2018).

Tedre, M. and Denning, P. J. (2016) ‘The Long Quest for Computational Thinking’, in Proceedings of

the 16th Koli Calling International Conference on Computing Education Research. New York, NY,

USA: ACM (Koli Calling ’16), pp. 120–129. doi: 10.1145/2999541.2999542.

The Royal Society (2107) After the reboot: computing education in UK schools. The Royal Society, p.

60. Available at: royalsociety.org/computing-education (Accessed: 22 February 2018).

Turner, S. et al. (2008) ‘Gender differences in Holland vocational personality types: Implications for

school counselors’, Professional School Counseling, 11(5), pp. 317–326.

Waite, J. (2017) Pedagogy in teaching Computer Science in schools: A Literature Review. Royal

Society. Available at: https://royalsociety.org/~/media/policy/projects/Computing-

education/literature-review-pedagogy-in-teaching.pdf.

Waite, J. (2018) ‘Primary computational thinking - experience in the UK’. Personal communication.

Wenmoth, D. (2008) ‘CORE Educational Positioning System 2.0’, 24 October. Available at:

https://www.slideshare.net/dwenmoth/eps2-presentation (Accessed: 22 February 2018).

Review of Literature on Computational Thinking Millwood et al

37

Wilson, C. et al. (2010) ‘Running on empty: The failure to teach K-12 Computer Science in the digital

age. Association for Computing Machinery’, Computer Science Teachers Association.

Wing, J. M. (2006) ‘Computational Thinking’, Comm

Review of Literature on Computational Thinking Millwood et al

38

Appendix 1: The development of the report

The authors of this report formed a team under the supervision of Dr Richard Millwood, who took

overall responsibility for content and editing. Other experts also provided input, all of whom are

acknowledged here.

Dr Richard Millwood is Visiting Research Fellow in the School of Computer Science and Statistics in

Trinity College Dublin. He is currently facilitating a new community of practice for teachers at all levels

in Ireland called CESI•CS which is addressing the need for mutual support regarding the introduction

of computing in schools. Richard has been working for the last five years in Dublin to direct the Masters

in Technology and Learning supervising teachers’ own research at all levels. His doctorate was

awarded in “The Design of Learner-centred Technology-enhanced Education”. Apart from overall

direction of this report, Richard contributed the sections on definition, concepts & skills and on

progression. He also presented the report to the NCCA Board for Early Years & Primary and to the

NCCA Council.

Nina Bresnihan is an Assistant Professor in the School of Computer Science and Statistics in Trinity

College Dublin. Her doctoral study is in computational thinking and she is Principal Investigator on the

SFI-funded OurKidsCode project which is developing workshops for families to bring parents and

children together in creative use of computers. Nina has lectured for many years on the Masters in

Technology and Learning and supervised teachers’ own research. Nina worked on much of the section

justifying Computational Thinking and its rationale.

Dermot Walsh is an acting Principal in Roundfort School in Co. Mayo. His doctoral study is in

professional development and he has been recently awarded grants from the Teaching Council’s

Research Support Framework and from the Digital Strategy for Schools. His background has been in

Primary teaching and thus contributed much of the work on curriculum and professional

development.

Joy Hooper is a consultant who has a recent background in working for the UK’s Joint Information

Systems Committee (Jisc) and formerly the Education Ministry in New Zealand in the area of

technology enhanced learning. Her experience as a Primary School teacher informed her overview of

the work and her vital contribution was to manage the work, proof read and bring coherence to the

report.

Glenn Strong, Assistant Professor in the School of Computer Science and Statistics in Trinity College

Dublin and Dr Stephen Powell of the Centre for Excellence in Teaching & Learning at Manchester

Metropolitan University provided review and feedback as the work developed.

Review of Literature on Computational Thinking Millwood et al

39

In developing the report, the team held two conference calls with experts from UK organisations:

Dave Smith and Amanda Jackson form the Computing and Online Safety advisory team at HES -

Havering Education Services in London, U.K. Dave and Amanda helped to develop the Rising Stars’

Switched on Computing curriculum. Their knowledge and experience in curriculum development and

implementation of professional development gave us many helpful ideas.

Jane Waite, who is London Regional Project Manager of the Computing at School organisation for

teachers of Computing and also a learning resource developer in the Barefoot Computing team, who

have created a computing curriculum for Primary schools in England. Jane has worked for over a

decade as a Primary teacher, following twenty years working in computing for large organisations. Her

recent work has been to help develop Barefoot Computing, resources for teachers delivering the

Computing curriculum in Primary schools in England. Jane’s doctoral study investigating the continuity

and progression in the computing curriculum and her honest critique of the state of play in England

was a vital contribution to our report.

Tony Riley and Arlene Forster at the NCCA provided continual support, encouragement and critique

as the work developed.

